/*https://editor.p5js.org/p5/sketches/Simulate:_WolframCA
* @name Wolfram CA
* @description Simple demonstration of a Wolfram 1-dimensional cellular automata
* (<a href="http://natureofcode.com">natureofcode.com</a>)
*/
let w = 10;
// An array of 0s and 1s
let cells;
// We arbitrarily start with just the middle cell having a state of "1"
let generation = 0;
// An array to store the ruleset, for example {0,1,1,0,1,1,0,1}
let ruleset = [0, 1, 0, 1, 1, 0, 1, 0];
function setup() {
createCanvas(640, 400);
cells = Array(floor(width / w));
for (let i = 0; i < cells.length; i++) {
cells[i] = 0;
}
cells[cells.length/2] = 1;
}
function draw() {
for (let i = 0; i < cells.length; i++) {
if (cells[i] === 1) {
fill(200);
} else {
fill(51);
noStroke();
rect(i * w, generation * w, w, w);
}
}
if (generation < height/w) {
generate();
}
}
// The process of creating the new generation
function generate() {
// First we create an empty array for the new values
let nextgen = Array(cells.length);
// For every spot, determine new state by examing current state, and neighbor states
// Ignore edges that only have one neighor
for (let i = 1; i < cells.length-1; i++) {
let left = cells[i-1]; // Left neighbor state
let me = cells[i]; // Current state
let right = cells[i+1]; // Right neighbor state
nextgen[i] = rules(left, me, right); // Compute next generation state based on ruleset
}
// The current generation is the new generation
cells = nextgen;
generation++;
}
// Implementing the Wolfram rules
// Could be improved and made more concise, but here we can explicitly see what is going on for each case
function rules(a, b, c) {
if (a == 1 && b == 1 && c == 1) return ruleset[0];
if (a == 1 && b == 1 && c == 0) return ruleset[1];
if (a == 1 && b == 0 && c == 1) return ruleset[2];
if (a == 1 && b == 0 && c == 0) return ruleset[3];
if (a == 0 && b == 1 && c == 1) return ruleset[4];
if (a == 0 && b == 1 && c == 0) return ruleset[5];
if (a == 0 && b == 0 && c == 1) return ruleset[6];
if (a == 0 && b == 0 && c == 0) return ruleset[7];
return 0;
}