Code viewer for World: Character recognition neur...
// Port of Character recognition neural network from here:
// https://github.com/CodingTrain/Toy-Neural-Network-JS/tree/master/examples/mnist
// with many modifications 


// --- defined by MNIST - do not change these ---------------------------------------

const PIXELS = 28;                       // images in data set are tiny 
const PIXELSSQUARED = PIXELS * PIXELS;

// number of training and test exemplars in the data set:
const NOTRAIN = 60000;
const NOTEST = 10000;



//--- can modify all these --------------------------------------------------

// no of nodes in network 
const noinput = PIXELSSQUARED;
const nohidden = 64;
const nooutput = 10;

const learningrate = 0.1;   // default 0.1  

// should we train every timestep or not 
let do_training = true;

// how many to train and test per timestep 
const TRAINPERSTEP = 30;
const TESTPERSTEP = 5;

// multiply it by this to magnify for display 
const ZOOMFACTOR = 7;
const ZOOMPIXELS = ZOOMFACTOR * PIXELS;

// 3 rows of
// large image + 50 gap + small image    
// 50 gap between rows 

const canvaswidth = (PIXELS + ZOOMPIXELS) + 50;
const canvasheight = (ZOOMPIXELS * 3) + 100;


const DOODLE_THICK = 18;    // thickness of doodle lines 
const DOODLE_BLUR = 3;      // blur factor applied to doodles 


let mnist;
// all data is loaded into this 
// mnist.train_images
// mnist.train_labels
// mnist.test_images
// mnist.test_labels


let nn;

let trainrun = 1;
let train_index = 0;

let testrun = 1;
let test_index = 0;
let total_tests = 0;
let total_correct = 0;

// images in LHS:
let doodle, demo;
let doodle_exists = false;
let demo_exists = false;

let mousedrag = false;      // are we in the middle of a mouse drag drawing?  


// save inputs to global var to inspect
// type these names in console 
var train_inputs, test_inputs, demo_inputs, doodle_inputs;

// gc - variable to store doodle after cropped 
let croppedDoodle;
// gc - var to store doodles downloaded from server
let restoredDoodles;
// gc - crop doodles ?
let cropOn = true;



// Matrix.randomize() is changed to point to this. Must be defined by user of Matrix. 

function randomWeight() {
  return (AB.randomFloatAtoB(-0.5, 0.5));
  // Coding Train default is -1 to 1
}



// CSS trick 
// make run header bigger 
$("#runheaderbox").css({ "max-height": "95vh" });



//--- start of AB.msgs structure: ---------------------------------------------------------
// We output a serious of AB.msgs to put data at various places in the run header 
var thehtml;

// gc - updated the UI so user can label and save a doodle (to array)
// gc - upload array of doodles to server (for later use)
// gc - display doodles in console
// gc - test accuracy of doodles 
// gc - clear doodles on server
// 1 Doodle header 
thehtml = "<hr> <h1> 1. Doodle </h1> Top row: Doodle (left) and shrunk (right). <br> " +
  
  " Draw your doodle in top LHS. <button onclick='wipeDoodle();' class='normbutton' >Clear doodle</button> <br> " +
  "<hr> <h1 style='color:#FF1493;'> 1.1 Create Test Doodles</h1>" +
  "<img src='/uploads/gary/the-dude.jpg' width='400' alt='The Dude'> <br>" +
  "Draw a doodle and enter label, then click Save Doodle (repeat this) and save doodle array to server <br>" +
  "Label Doodle. <input type='text' id='testDoodleLabel'><button onclick='createTestDoodle();' class='normbutton' >Save</button>  <br> " +
  "Save to Server. <button onclick='saveToServer();' class='normbutton' >Save to Server</button> <br> " +
  "Show Test Doodles. <button onclick='showRestored();' class='normbutton' >Show</button> <br></br> " +
  "Test Doodle Accuracy. <button onclick='getAccuracy();' class='normbutton' >Accuracy</button> <br></br> " +
  "Clear server. <button onclick='clearServerTestDoodles();' class='normbutton' >Clear</button> <br></br> "






  ;
AB.msg(thehtml, 1);

// 2 Doodle variable data (guess)

// 3 Training header
thehtml = "<hr> <h1> 2. Training </h1> Middle row: Training image magnified (left) and original (right). <br>  " +
  " <button onclick='do_training = false;' class='normbutton' >Stop training</button> <br> ";
AB.msg(thehtml, 3);

// 4 variable training data 

// 5 Testing header
thehtml = "<h3> Hidden tests </h3> ";
AB.msg(thehtml, 5);

// 6 variable testing data 

// 7 Demo header 
thehtml = "<hr> <h1> 3. Demo </h1> Bottom row: Test image magnified (left) and  original (right). <br>" +
  " The network is <i>not</i> trained on any of these images. <br> " +
  " <button onclick='makeDemo();' class='normbutton' >Demo test image</button> <br> ";
AB.msg(thehtml, 7);

// 8 Demo variable data (random demo ID)
// 9 Demo variable data (changing guess)

const greenspan = "<span style='font-weight:bold; font-size:x-large; color:darkgreen'> ";

//--- end of AB.msgs structure: ---------------------------------------------------------




function setup() {
  createCanvas(canvaswidth, canvasheight);

  doodle = createGraphics(ZOOMPIXELS, ZOOMPIXELS);       // doodle on larger canvas 
  doodle.pixelDensity(1);

  // JS load other JS 
  // maybe have a loading screen while loading the JS and the data set 

  AB.loadingScreen();

  $.getScript("/uploads/codingtrain/matrix.js", function () {
    $.getScript("/uploads/codingtrain/nn.js", function () {
      // $.getScript("/uploads/gary/nn.js", function () {
      $.getScript("/uploads/codingtrain/mnist.js", function () {
        console.log("All JS loaded");
        nn = new NeuralNetwork(noinput, nohidden, nooutput);
        nn.setLearningRate(learningrate);
        loadData();
      });
    });
  });

  // gc - when page loads/is setup download doodles from server
  getDoodles();
}



// load data set from local file (on this server)

function loadData() {
  loadMNIST(function (data) {
    mnist = data;
    console.log("All data loaded into mnist object:")
    console.log(mnist);
    AB.removeLoading();     // if no loading screen exists, this does nothing 
  });
}



function getImage(img)      // make a P5 image object from a raw data array   
{
  let theimage = createImage(PIXELS, PIXELS);    // make blank image, then populate it 
  theimage.loadPixels();

  for (let i = 0; i < PIXELSSQUARED; i++) {
    let bright = img[i];
    let index = i * 4;
    theimage.pixels[index + 0] = bright;
    theimage.pixels[index + 1] = bright;
    theimage.pixels[index + 2] = bright;
    theimage.pixels[index + 3] = 255;
  }

  theimage.updatePixels();
  return theimage;
}


function getInputs(img)      // convert img array into normalised input array 
{
  let inputs = [];
  for (let i = 0; i < PIXELSSQUARED; i++) {
    let bright = img[i];
    inputs[i] = bright / 255;       // normalise to 0 to 1
  }
  return (inputs);
}



function trainit(show)        // train the network with a single exemplar, from global var "train_index", show visual on or off 
{
  let img = mnist.train_images[train_index];
  let label = mnist.train_labels[train_index];

  // optional - show visual of the image 
  if (show) {
    var theimage = getImage(img);    // get image from data array 
    image(theimage, 0, ZOOMPIXELS + 50, ZOOMPIXELS, ZOOMPIXELS);      // magnified 
    image(theimage, ZOOMPIXELS + 50, ZOOMPIXELS + 50, PIXELS, PIXELS);      // original
  }

  // set up the inputs
  let inputs = getInputs(img);       // get inputs from data array 

  // set up the outputs
  let targets = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0];
  targets[label] = 1;       // change one output location to 1, the rest stay at 0 

  // console.log(train_index);
  // console.log(inputs);
  // console.log(targets);

  train_inputs = inputs;        // can inspect in console 
  nn.train(inputs, targets);

  thehtml = " trainrun: " + trainrun + "<br> no: " + train_index;
  AB.msg(thehtml, 4);

  train_index++;
  if (train_index == NOTRAIN) {
    train_index = 0;
    console.log("finished trainrun: " + trainrun);
    trainrun++;
  }
}


function testit()    // test the network with a single exemplar, from global var "test_index"
{
  let img = mnist.test_images[test_index];
  let label = mnist.test_labels[test_index];

  // set up the inputs
  let inputs = getInputs(img);

  test_inputs = inputs;        // can inspect in console 
  let prediction = nn.predict(inputs);       // array of outputs 
  let guess = findMax(prediction);      // the top output 

  total_tests++;
  if (guess == label) total_correct++;

  let percent = (total_correct / total_tests) * 100;

  thehtml = " testrun: " + testrun + "<br> no: " + total_tests + " <br> " +
    " correct: " + total_correct + "<br>" +
    "  score: " + greenspan + percent.toFixed(2) + "</span>";
  AB.msg(thehtml, 6);

  test_index++;
  if (test_index == NOTEST) {
    console.log("finished testrun: " + testrun + " score: " + percent.toFixed(2));
    testrun++;
    test_index = 0;
    total_tests = 0;
    total_correct = 0;
  }
}




//--- find no.1 (and maybe no.2) output nodes ---------------------------------------
// (restriction) assumes array values start at 0 (which is true for output nodes) 


function find12(a)         // return array showing indexes of no.1 and no.2 values in array 
{
  let no1 = 0;
  let no2 = 0;
  let no1value = 0;
  let no2value = 0;

  for (let i = 0; i < a.length; i++) {
    if (a[i] > no1value) {
      no1 = i;
      no1value = a[i];
    }
    else if (a[i] > no2value) {
      no2 = i;
      no2value = a[i];
    }
  }

  var b = [no1, no2];
  return b;
}


// just get the maximum - separate function for speed - done many times 
// find our guess - the max of the output nodes array

function findMax(a) {
  let no1 = 0;
  let no1value = 0;

  for (let i = 0; i < a.length; i++) {
    if (a[i] > no1value) {
      no1 = i;
      no1value = a[i];
    }
  }

  return no1;
}




// --- the draw function -------------------------------------------------------------
// every step:

function draw() {
  // check if libraries and data loaded yet:
  if (typeof mnist == 'undefined') return;


  // how can we get white doodle on black background on yellow canvas?
  //        background('#ffffcc');    doodle.background('black');

  background('black');

  if (do_training) {
    // do some training per step 
    for (let i = 0; i < TRAINPERSTEP; i++) {
      if (i == 0) trainit(true);    // show only one per step - still flashes by  
      else trainit(false);
    }

    // do some testing per step 
    for (let i = 0; i < TESTPERSTEP; i++)
      testit();
  }

  // keep drawing demo and doodle images 
  // and keep guessing - we will update our guess as time goes on 

  if (demo_exists) {
    drawDemo();
    guessDemo();
  }
  if (doodle_exists) {
    drawDoodle();
    guessDoodle();
  }


  // detect doodle drawing 
  // (restriction) the following assumes doodle starts at 0,0 

  if (mouseIsPressed)         // gets called when we click buttons, as well as if in doodle corner  
  {
    // console.log ( mouseX + " " + mouseY + " " + pmouseX + " " + pmouseY );
    var MAX = ZOOMPIXELS + 20;     // can draw up to this pixels in corner 
    if ((mouseX < MAX) && (mouseY < MAX) && (pmouseX < MAX) && (pmouseY < MAX)) {
      mousedrag = true;       // start a mouse drag 
      doodle_exists = true;
      doodle.stroke('white');
      doodle.strokeWeight(DOODLE_THICK);
      doodle.line(mouseX, mouseY, pmouseX, pmouseY);
    }
  }
  else {
    // are we exiting a drawing
    if (mousedrag) {
      mousedrag = false;
      // console.log ("Exiting draw. Now blurring.");
      doodle.filter(BLUR, DOODLE_BLUR);    // just blur once 
      //   console.log (doodle);
    }
  }
}




//--- demo -------------------------------------------------------------
// demo some test image and predict it
// get it from test set so have not used it in training


function makeDemo() {
  demo_exists = true;
  var i = AB.randomIntAtoB(0, NOTEST - 1);

  demo = mnist.test_images[i];
  var label = mnist.test_labels[i];

  thehtml = "Test image no: " + i + "<br>" +
    "Classification: " + label + "<br>";
  AB.msg(thehtml, 8);

  // type "demo" in console to see raw data 
}


function drawDemo() {
  var theimage = getImage(demo);
  //  console.log (theimage);

  image(theimage, 0, canvasheight - ZOOMPIXELS, ZOOMPIXELS, ZOOMPIXELS);      // magnified 
  image(theimage, ZOOMPIXELS + 50, canvasheight - ZOOMPIXELS, PIXELS, PIXELS);      // original
}


function guessDemo() {
  let inputs = getInputs(demo);

  demo_inputs = inputs;  // can inspect in console 

  let prediction = nn.predict(inputs);       // array of outputs 
  let guess = findMax(prediction);      // the top output 

  thehtml = " We classify it as: " + greenspan + guess + "</span>";
  AB.msg(thehtml, 9);
}



//--- doodle -------------------------------------------------------------

function drawDoodle() {
  // doodle is createGraphics not createImage
  let theimage = doodle.get();
  image(theimage, 0, 0, ZOOMPIXELS, ZOOMPIXELS);      // original 
  image(theimage, ZOOMPIXELS + 50, 0, PIXELS, PIXELS);      // shrunk
}




function guessDoodle() {
  // console.log('.... GUESS Doodle ...');
  // doodle is createGraphics not createImage
  let img = doodle.get();

  img.resize(PIXELS, PIXELS);
  img.loadPixels();

  // console.log(img);

  // set up inputs   
  let inputs = [];
  for (let i = 0; i < PIXELSSQUARED; i++) {
    inputs[i] = img.pixels[i * 4] / 255;
    // inputs[i] = img.pixels[i * 4];
  }

  doodle_inputs = inputs;     // can inspect in console 


  // feed forward to make prediction 

  let prediction;

  // gc - if cropOn is true, crop doodle before make prediction
  if (cropOn) {
    prediction = nn.predict(crop(doodle_inputs));
  } else {
    prediction = nn.predict(doodle_inputs);
  }

  let b = find12(prediction);       // get no.1 and no.2 guesses  

  thehtml = " We classify it as: " + greenspan + b[0] + "</span> <br>" +
    " No.2 guess is: " + greenspan + b[1] + "</span>";
  AB.msg(thehtml, 2);
}


function wipeDoodle() {
  doodle_exists = false;
  doodle.background('black');
}


// gc - do we have restored doodles array ?
function isRestoredDoodlesUndefined() {
  return typeof restoredDoodles == 'undefined';
}

// gc - save a doodle and label to array
function createTestDoodle() {
  if (isRestoredDoodlesUndefined()) {
    console.log('UNDEF');
    restoredDoodles = [];
  }

  var label = document.getElementById('testDoodleLabel').value;
  console.log(label);

  let doodleWithLabel = new DoodleWithLabel(doodle_inputs, label);

  restoredDoodles.push(doodleWithLabel);

  console.log(restoredDoodles);

  // console.log('-----------------------------------------');
  // console.log(doodle_inputs);
  // console.log(croppedDoodle);
  // console.log('-----------------------------------------');

  // clear doodle and label
  wipeDoodle();
  document.getElementById('testDoodleLabel').value = '';
}

// gc - save array of doodles/labels to server
function saveToServer() {
  console.log('.... saving Doodle array to server ....');
  if (!isRestoredDoodlesUndefined()) {
    AB.saveData(restoredDoodles);
  }
}

// gc - download doodles/labels from server
function getDoodles() {
  console.log('.... get back Doodle array from server ....');
  AB.restoreData(function (d) {
    console.log('Restored ' + d.length + ' test doodles from server.');
    restoredDoodles = d;
  });
}

// gc - display doodles/labels
function showRestored() {
  console.log(restoredDoodles);
}

// gc - clear doodles/labels on server 
function clearServerTestDoodles() {
  restoredDoodles = [];
  AB.saveData(restoredDoodles);
}

// gc - for each doodle let NN make a prediction
// gc - then compare prediction against label
// gc - calculate accuracy
// gc - if cropOn is true, crop doolde before make prediction
function getAccuracy() {
  let correct = 0;

  for (let i = 0; i < restoredDoodles.length; i++) {
    let resDoodle = restoredDoodles[i].doodle;

    let prediction;

    if (cropOn) {
      prediction = nn.predict(crop(resDoodle));
    } else {
      prediction = nn.predict(resDoodle);
    }

    let b = find12(prediction);

    if (b[0] == restoredDoodles[i].label) {
      correct++;
    }
    console.log('Predicted: ' + b[0] + " --- " + 'Label: ' + restoredDoodles[i].label);
  }

  console.log('Got ' + correct + ' correct');
  let percentCorrect = correct / restoredDoodles.length * 100;
  console.log(percentCorrect);
}

// gc - class to store doodle and label
class DoodleWithLabel {
  constructor(doodle, label) {
    this.doodle = doodle;
    this.label = label;
  }
}











// gc - crop doodle
function crop(inputDoodle) {
  var cropped = [];
  for (var i = 0; i < 784; i++) {
    cropped[i] = 0.0;
  }

  // Center drawn digit in 20x20 pixels
  var norm = 20.0;

  var i, j, left = 0, right = 27, top = 0, bottom = 27;

  for (i = 0; i < 28; i++) {
    found = false;
    for (j = 0; j < 28; j++) {
      if (inputDoodle[28 * i + j] != 0)
        found = true;
    }
    if (found) {
      left = i;
      break;
    }
  }
  for (i = 27; i >= 0; i--) {
    found = false;
    for (j = 0; j < 28; j++) {
      if (inputDoodle[28 * i + j] != 0)
        found = true;
    }
    if (found) {
      right = i;
      break;
    }
  }
  for (j = 0; j < 28; j++) {
    found = false;
    for (i = 0; i < 28; i++) {
      if (inputDoodle[28 * i + j] != 0)
        found = true;
    }
    if (found) {
      top = j;
      break;
    }
  }
  for (j = 27; j >= 0; j--) {
    found = false;
    for (i = 0; i < 28; i++) {
      if (inputDoodle[28 * i + j] != 0)
        found = true;
    }
    if (found) {
      bottom = j;
      break;
    }
  }
  var x, y;
  var h = right - left + 1;
  var w = bottom - top + 1;
  var s = norm / h;
  if (norm / w < s)
    s = norm / w;
  var w2 = Math.floor(w * s);
  var h2 = Math.floor(h * s);
  var w3 = Math.round((28 - w2) / 2);
  var h3 = Math.round((28 - h2) / 2);
  for (i = 0; i < 784; i++)
    cropped[i] = 0.0;
  for (j = 0; j < w2; j++)
    for (i = 0; i < h2; i++) {
      x = Math.floor(i / s) + left;
      y = Math.floor(j / s) + top;
      cropped[28 * (i + h3) + j + w3] = inputDoodle[28 * x + y];
    }
  return cropped;
}




// --- debugging --------------------------------------------------
// in console
// showInputs(demo_inputs);
// showInputs(doodle_inputs);


function showInputs(inputs)
// display inputs row by row, corresponding to square of pixels 
{
  var str = "";
  for (let i = 0; i < inputs.length; i++) {
    if (i % PIXELS == 0) str = str + "\n";                                   // new line for each row of pixels 
    var value = inputs[i];
    str = str + " " + value.toFixed(2);
  }
  console.log(str);
}