Code viewer for World: BIBEK PRASAD GUPTA's Chara...
// Cloned by BIBEK PRASAD GUPTA on 7 Dec 2020 from World "Character recognition neural network" by "Coding Train" project 
// Please leave this clone trail here.


// Port of Character recognition neural network from here:
// https://github.com/CodingTrain/Toy-Neural-Network-JS/tree/master/examples/mnist
// with many modifications 


// --- defined by MNIST - do not change these ---------------------------------------

const PIXELS = 28; // images in data set are tiny 
const PIXELSSQUARED = PIXELS * PIXELS;

// Bibek- Image cropped to make it a 24*24 sized image
const CROPPED_DOODLE_PIXELS = 24;

// number of training and test exemplars in the data set:
const NOTRAIN = 60000;
const NOTEST = 10000;



//--- can modify all these --------------------------------------------------

// no of nodes in network 
const noinput = PIXELSSQUARED;
const nohidden = 64*2;
const nooutput = 10;

const learningrate = 0.1; // default 0.1  

// should we train every timestep or not 
let do_training = true;

// how many to train and test per timestep
const TRAINPERSTEP = 30;
const TESTPERSTEP = 5;

// multiply it by this to magnify for display 
const ZOOMFACTOR = 7;
const ZOOMPIXELS = ZOOMFACTOR * PIXELS;

// 3 rows of
// large image + 50 gap + small image    
// 50 gap between rows 

const canvaswidth = (PIXELS + ZOOMPIXELS) + 50;
const canvasheight = (ZOOMPIXELS * 3) + 100;


const DOODLE_THICK = 18; // thickness of doodle lines

// Bibek - Removing blur as it is resulting in better accuracy
const DOODLE_BLUR = 0; // blur factor applied to doodles 


let mnist;
// all data is loaded into this 
// mnist.train_images
// mnist.train_labels
// mnist.test_images
// mnist.test_labels


let nn;
let cnn;

let trainrun = 1;
let train_index = 0;

let testrun = 1;
let test_index = 0;
let total_tests = 0;
let total_correct = 0;

// images in LHS:
let doodle, demo;
let doodle_exists = false;
let demo_exists = false;

let mousedrag = false; // are we in the middle of a mouse drag drawing?  


// save inputs to global var to inspect
// type these names in console 
var train_inputs, test_inputs, demo_inputs, doodle_inputs;


// Matrix.randomize() is changed to point to this. Must be defined by user of Matrix. 

function randomWeight() {
  return (AB.randomFloatAtoB(-0.5, 0.5));
  // Coding Train default is -1 to 1
}



// CSS trick 
// make run header bigger 
$("#runheaderbox").css({
  "max-height": "95vh"
});



//--- start of AB.msgs structure: ---------------------------------------------------------
// We output a serious of AB.msgs to put data at various places in the run header 
var thehtml;

// 1 Doodle header 
thehtml = "<hr> <h1> 1. Doodle </h1> Top row: Doodle (left) and shrunk (right). <br> " +
  " Draw your doodle in top LHS. <button onclick='wipeDoodle();' class='normbutton' >Clear doodle</button> <br> ";
AB.msg(thehtml, 1);

// 2 Doodle variable data (guess)

// 3 Training header
thehtml = "<hr> <h1> 2. Training </h1> Middle row: Training image magnified (left) and original (right). <br>  " +
  " <button onclick='do_training = false;' class='normbutton' >Stop training</button> <br> ";
AB.msg(thehtml, 3);

// 4 variable training data 

// 5 Testing header
thehtml = "<h3> Hidden tests </h3> ";
AB.msg(thehtml, 5);

// 6 variable testing data 

// 7 Demo header 
thehtml = "<hr> <h1> 3. Demo </h1> Bottom row: Test image magnified (left) and  original (right). <br>" +
  " The network is <i>not</i> trained on any of these images. <br> " +
  " <button onclick='makeDemo();' class='normbutton' >Demo test image</button> <br> ";
AB.msg(thehtml, 7);

// 8 Demo variable data (random demo ID)
// 9 Demo variable data (changing guess)

const greenspan = "<span style='font-weight:bold; font-size:x-large; color:darkgreen'> ";

//--- end of AB.msgs structure: ---------------------------------------------------------




function setup() {
  createCanvas(canvaswidth, canvasheight);

  doodle = createGraphics(ZOOMPIXELS, ZOOMPIXELS); // doodle on larger canvas 
  doodle.pixelDensity(1);

  // JS load other JS 
  // maybe have a loading screen while loading the JS and the data set 


  AB.loadingScreen();

  // Bibek - Added files related to webCNN
  $.getScript("/uploads/codingtrain/matrix.js", function () {
    $.getScript("/uploads/codingtrain/nn.js", function () {
      $.getScript("/uploads/codingtrain/mnist.js", function () {
        $.getScript("/uploads/bibek20210617/webcnn.js", function () {
          $.getScript("uploads/bibek20210617/mathutils.js", function () {
            $.ajax({
              url: "/uploads/bibek20210617/cnn_mnist_10_20_98accuracy.json",
              dataType: "json",
              success: onJSONLoaded
            });
          });
        });
      });
    });
  });
}

// load data set from local file (on this server)

function loadData() {
  loadMNIST(function (data) {
    mnist = data;
    console.log("All data loaded into mnist object:")
    console.log(mnist);
    AB.removeLoading(); // if no loading screen exists, this does nothing 
  });
}


// Bibek - Added extra size parameter to make this function reusable and also to work for getting cropped image
function getImage(img, size = PIXELS) // make a P5 image object from a raw data array   
{
  let theimage = createImage(PIXELS, PIXELS); // make blank image, then populate it 
  theimage.loadPixels();

  for (let i = 0; i < size * size; i++) {
    let bright = img[i];
    let index = i * 4;
    theimage.pixels[index + 0] = bright;
    theimage.pixels[index + 1] = bright;
    theimage.pixels[index + 2] = bright;
    theimage.pixels[index + 3] = 255;
  }

  theimage.updatePixels();
  return theimage;
}


function getInputs(img) // convert img array into normalised input array 
{
  let inputs = [];
  for (let i = 0; i < PIXELSSQUARED; i++) {
    let bright = img[i];
    inputs[i] = bright / 255; // normalise to 0 to 1
  }
  return (inputs);
}



function trainit(show) // train the network with a single exemplar, from global var "train_index", show visual on or off 
{
  let img = mnist.train_images[train_index];
  let label = mnist.train_labels[train_index];

  // optional - show visual of the image 
  if (show) {
    var theimage = getImage(img); // get image from data array 
    image(theimage, 0, ZOOMPIXELS + 50, ZOOMPIXELS, ZOOMPIXELS); // magnified 
    image(theimage, ZOOMPIXELS + 50, ZOOMPIXELS + 50, PIXELS, PIXELS); // original
  }

  // set up the inputs
  let inputs = getInputs(img); // get inputs from data array 

  // set up the outputs
  let targets = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0];
  targets[label] = 1; // change one output location to 1, the rest stay at 0 

  // console.log(train_index);
  // console.log(inputs);
  // console.log(targets);

  train_inputs = inputs; // can inspect in console 
  nn.train(inputs, targets);

  thehtml = " trainrun: " + trainrun + "<br> no: " + train_index;
  AB.msg(thehtml, 4);

  train_index++;
  if (train_index == NOTRAIN) {
    train_index = 0;
    console.log("finished trainrun: " + trainrun);
    trainrun++;
  }
}


function testit() // test the network with a single exemplar, from global var "test_index"
{
  let img = mnist.test_images[test_index];
  let label = mnist.test_labels[test_index];

  // set up the inputs
  let inputs = getInputs(img);

  test_inputs = inputs; // can inspect in console 
  let prediction = nn.predict(inputs); // array of outputs 
  let guess = findMax(prediction); // the top output 

  total_tests++;
  if (guess == label) total_correct++;

  let percent = (total_correct / total_tests) * 100;

  thehtml = " testrun: " + testrun + "<br> no: " + total_tests + " <br> " +
    " correct: " + total_correct + "<br>" +
    "  score: " + greenspan + percent.toFixed(2) + "</span>";
  AB.msg(thehtml, 6);

  test_index++;
  if (test_index == NOTEST) {
    console.log("finished testrun: " + testrun + " score: " + percent.toFixed(2));
    testrun++;
    test_index = 0;
    total_tests = 0;
    total_correct = 0;
  }
}




//--- find no.1 (and maybe no.2) output nodes ---------------------------------------
// (restriction) assumes array values start at 0 (which is true for output nodes) 

// Bibek - updated the funcion to work as per object returned by cnn classfier
function find12(a) // return array showing indexes of no.1 and no.2 values in array 
{
  let firstGuess = 0;
  let secondGuess = 0;
  let firstValue = 0;
  let secondValue = 0;
  for (let i = 0; i < 10; i++) {
    let predictedVal = a[0].getValue(0, 0, i);
    if (predictedVal > firstValue) {
      firstGuess = i;
      firstValue = predictedVal;
    }
  }

  // Bibek - Corrected the logic to get the second guess
  for (let i = 0; i < 10; i++) {
    let predictedVal = a[0].getValue(0, 0, i);
    if ((firstGuess != i) && (predictedVal > secondValue)) {
      secondGuess = i;
      secondValue = predictedVal;
    }
  }
  return [firstGuess, secondGuess];
}


// just get the maximum - separate function for speed - done many times 
// find our guess - the max of the output nodes array

function findMax(a) {
  let no1 = 0;
  let no1value = 0;

  for (let i = 0; i < a.length; i++) {
    if (a[i] > no1value) {
      no1 = i;
      no1value = a[i];
    }
  }

  return no1;
}




// --- the draw function -------------------------------------------------------------
// every step:

function draw() {
  // check if libraries and data loaded yet:
  if (typeof mnist == 'undefined') return;


  // how can we get white doodle on black background on yellow canvas?
  //        background('#ffffcc');    doodle.background('black');

  background('black');

  if (do_training) {
    // do some training per step 
    for (let i = 0; i < TRAINPERSTEP; i++) {
      if (i == 0) trainit(true); // show only one per step - still flashes by  
      else trainit(false);
    }

    // do some testing per step 
    for (let i = 0; i < TESTPERSTEP; i++)
      testit();
  }

  // keep drawing demo and doodle images 
  // and keep guessing - we will update our guess as time goes on 

  if (demo_exists) {
    drawDemo();
    guessDemo();
  }
  if (doodle_exists) {
    drawDoodle();
    guessDoodle();
  }


  // detect doodle drawing 
  // (restriction) the following assumes doodle starts at 0,0 

  if (mouseIsPressed) // gets called when we click buttons, as well as if in doodle corner  
  {
    // console.log ( mouseX + " " + mouseY + " " + pmouseX + " " + pmouseY );
    var MAX = ZOOMPIXELS + 20; // can draw up to this pixels in corner 
    if ((mouseX < MAX) && (mouseY < MAX) && (pmouseX < MAX) && (pmouseY < MAX)) {
      mousedrag = true; // start a mouse drag 
      doodle_exists = true;
      doodle.stroke('white');
      doodle.strokeWeight(DOODLE_THICK);
      doodle.line(mouseX, mouseY, pmouseX, pmouseY);
    }
  } else {
    // are we exiting a drawing
    if (mousedrag) {
      mousedrag = false;
      // console.log ("Exiting draw. Now blurring.");
      doodle.filter(BLUR, DOODLE_BLUR); // just blur once 
      //   console.log (doodle);
    }
  }
}




//--- demo -------------------------------------------------------------
// demo some test image and predict it
// get it from test set so have not used it in training


function makeDemo() {
  demo_exists = true;
  var i = AB.randomIntAtoB(0, NOTEST - 1);

  demo = mnist.test_images[i];
  var label = mnist.test_labels[i];

  thehtml = "Test image no: " + i + "<br>" +
    "Classification: " + label + "<br>";
  AB.msg(thehtml, 8);

  // type "demo" in console to see raw data 
}


function drawDemo() {
  var theimage = getImage(demo);
  //  console.log (theimage);

  image(theimage, 0, canvasheight - ZOOMPIXELS, ZOOMPIXELS, ZOOMPIXELS); // magnified 
  image(theimage, ZOOMPIXELS + 50, canvasheight - ZOOMPIXELS, PIXELS, PIXELS); // original
}


function guessDemo() {
  let inputs = getInputs(demo);

  demo_inputs = inputs; // can inspect in console 

  let prediction = nn.predict(inputs); // array of outputs 
  let guess = findMax(prediction); // the top output 

  thehtml = " We classify it as: " + greenspan + guess + "</span>";
  AB.msg(thehtml, 9);
}




//--- doodle -------------------------------------------------------------

function drawDoodle() {
  // doodle is createGraphics not createImage
  let theimage = doodle.get();
  // console.log (theimage);

  image(theimage, 0, 0, ZOOMPIXELS, ZOOMPIXELS); // original 
  image(theimage, ZOOMPIXELS + 50, 0, PIXELS, PIXELS); // shrunk
}


function guessDoodle() {
  // doodle is createGraphics not createImage
  let img = doodle.get();

  img.resize(PIXELS, PIXELS);
  img.loadPixels();

  // set up inputs   
  let inputs = [];
  for (let i = 0; i < PIXELSSQUARED; i++) {
    inputs[i] = img.pixels[i * 4] / 255;
  }

  doodle_inputs = inputs; // can inspect in console 

  // feed forward to make prediction
  // Commented old predictor
  // let prediction = nn.predict(inputs); // array of outputs

  // Bibek - Used CNN classifier to get the prediction
  let prediction = cnn.classifyImages([getInObjectFormat(preprocessingImage(img.pixels, PIXELS), CROPPED_DOODLE_PIXELS)]);
  let b = find12(prediction); // get no.1 and no.2 guesses  
  thehtml = " We classify it as: " + greenspan + b[0] + "</span> <br>" +
    " No.2 guess is: " + greenspan + b[1] + "</span>";
  AB.msg(thehtml, 2);
}


function wipeDoodle() {
  doodle_exists = false;
  doodle.background('black');
}




// --- debugging --------------------------------------------------
// in console
// showInputs(demo_inputs);
// showInputs(doodle_inputs);


function showInputs(inputs)
// display inputs row by row, corresponding to square of pixels 
{
  var str = "";
  for (let i = 0; i < inputs.length; i++) {
    if (i % PIXELS == 0) str = str + "\n"; // new line for each row of pixels 
    var value = inputs[i];
    str = str + " " + value.toFixed(2);
  }
  console.log(str);
}

/*
 Bibek - CNN code begins here
 Reference - https://github.com/DenseInL2/webcnn 
*/

// Utility function to trigger CNN and old network initilisation
function onJSONLoaded(response) {
  console.log("All JS loaded");
	console.log("JSON Loaded!");
	
  // Bibek - CNN Network initilisation is done by this function
  loadNetworkFromJSON(response);

  // Bibek - Continue training the old Network
  nn = new NeuralNetwork(noinput, nohidden, nooutput);
  nn.setLearningRate(learningrate);
  loadData();
}

// Bibek - Initialise CNN with pretrained weights and other parameters from the JSON file response
function loadNetworkFromJSON(networkJSON) {
  cnn = new WebCNN();

  if (networkJSON.momentum != undefined) cnn.setMomentum(networkJSON.momentum);
  if (networkJSON.lambda != undefined) cnn.setLambda(networkJSON.lambda);
  if (networkJSON.learningRate != undefined) cnn.setLearningRate(networkJSON.learningRate);

  for (var layerIndex = 0; layerIndex < networkJSON.layers.length; ++layerIndex) {
    let layerDesc = networkJSON.layers[layerIndex];
    console.log(layerDesc);
    cnn.newLayer(layerDesc);
  }

  for (var layerIndex = 0; layerIndex < networkJSON.layers.length; ++layerIndex) {
    let layerDesc = networkJSON.layers[layerIndex];

    switch (networkJSON.layers[layerIndex].type) {
      case LAYER_TYPE_CONV:
      case LAYER_TYPE_FULLY_CONNECTED: {
        if (layerDesc.weights != undefined && layerDesc.biases != undefined) {
          cnn.layers[layerIndex].setWeightsAndBiases(layerDesc.weights, layerDesc.biases);
        }
        break;
      }
    }
  }

  cnn.initialize();
}

// Bibek - Utility function to prepare object for CNN classifier
function getInObjectFormat(image, size) {
  return {
    "width": size,
    "height": size,
    "data": getImage(randCropUtil(image, size), size).pixels
  };
}

/* Bibek - Utility function to preprocess the image before passing it to the classifier
   Cropping the image to 24*24 for better acccuracy
*/
function preprocessingImage(pixels, size) {

  // Bibek - Creating a 2-D array from 1-D pixels array
  let imgTemp = [];
  for (let i = 0; i < size; i++) {
    imgTemp[i] = [];
    for (let j = 0; j < size; j++) {
      imgTemp[i][j] = pixels[(i * size + j) * 4];
    }
  }

  // Bibek - Centering the image
  var tmost = Number.MAX_VALUE;
  var lmost = Number.MAX_VALUE;
  var bmost = -1;
  var rmost = -1;
  for (var y = 0; y < imgTemp.length; y++) {
    var l = imgTemp[y].indexOf(255);
    var r = imgTemp[y].lastIndexOf(255);
    if (l >= 0 && l < lmost) lmost = l;
    if (r >= 0 && r > rmost) rmost = r;
    if (l >= 0 && y < tmost) tmost = y;
    if (l >= 0 && y > bmost) bmost = y;
  }
  let transX = Math.floor((size - rmost - lmost) / 2);
  let transY = Math.floor((size - bmost - tmost) / 2);
  let result = Array(size).fill().map(() => Array(size).fill(0));
  for (i = tmost; i <= bmost; i++) {
    for (j = lmost; j <= rmost; j++) {
      result[i + transY][j + transX] = imgTemp[i][j];
    }
  }

  // Bibek - Pushing the values from result the 2D array to make it a 1D array
  let final = [];
  for (let i = 0; i < size; i++) {
    for (let j = 0; j < size; j++) {
      final[i * size + j] = result[i][j];
    }
  }
  return final;
}

// Bibek - Utility function for cropping the image starting at random (x,y)
function randCropUtil(image, size) {
  const maxStartInd = PIXELS - size;
  let xrandind = Math.floor(Math.random() * maxStartInd);
  let yrandind = Math.floor(Math.random() * maxStartInd);
  return cropImage(image, size, xrandind, yrandind);
}

// Bibek - function to crop the image starting from (x,y) and returns 1-D array
function cropImage(image, size, x = 2, y = 2) {
  let result = [];
  let xLastInd = x + size;
  let yLastInd = y + size;
  for (let i = x; i < xLastInd; i++) {
    for (let j = y; j < yLastInd; j++) {
      result.push(image[i * PIXELS + j])
    }
  }
  return (result);
}