// Cloned by Abdelshafa Abdala on 27 Nov 2022 from World "Letter recognition neural network" by Sunil Jagtap
// Please leave this clone trail here.
const PIXELS=28,PIXELSSQUARED=PIXELS*PIXELS,NOTRAIN=6e4,NOTEST=1e4,ALPHABETS=["A","B","C","D","E","F","G","H","I","J","K","L","M","N","O","P","Q","R","S","T","U","V","W","X","Y","Z"],noinput=PIXELSSQUARED,nohidden=64,nooutput=10,learningrate=.1;let do_training=!0;const TRAINPERSTEP=30,TESTPERSTEP=5,ZOOMFACTOR=7,ZOOMPIXELS=7*PIXELS,canvaswidth=PIXELS+ZOOMPIXELS+50,canvasheight=3*ZOOMPIXELS+100,DOODLE_THICK=18,DOODLE_BLUR=3;let mnist,nn,mycnnTrain,mycnnModel,doodle,demo,trainrun=1,train_index=0,testrun=1,test_index=0,total_tests=0,total_correct=0,doodle_exists=!1,demo_exists=!1,mousedrag=!1;var train_inputs,test_inputs,demo_inputs,doodle_inputs,thehtml;function randomWeight(){return AB.randomFloatAtoB(-.5,.5)}AB.headerCSS({"max-height":"95vh"}),thehtml="<hr> <h1> 1. Doodle </h1> Top row: Doodle (left) and shrunk (right). <br> Draw your doodle in top LHS. <button onclick='wipeDoodle();' class='normbutton' >Clear doodle</button> <br> ",AB.msg(thehtml,1),thehtml="<hr> <h1> 2. Training </h1> Middle row: Training image magnified (left) and original (right). <br> <button onclick='do_training = false;' class='normbutton' >Stop training</button> <br> ",AB.msg(thehtml,3),thehtml="<h3> Hidden tests </h3> ",AB.msg(thehtml,5),thehtml="<hr> <h1> 3. Demo </h1> Bottom row: Test image magnified (left) and original (right). <br> The network is <i>not</i> trained on any of these images. <br> <button onclick='makeDemo();' class='normbutton' >Demo test image</button> <br> ",AB.msg(thehtml,7);const greenspan="<span style='font-weight:bold; font-size:x-large; color:darkgreen'> ";function setup(){createCanvas(canvaswidth,canvasheight),(doodle=createGraphics(ZOOMPIXELS,ZOOMPIXELS)).pixelDensity(1),wipeDoodle(),AB.loadingScreen(),$.getScript("/uploads/codingtrain/matrix.js",function(){$.getScript("/uploads/jagtaps2/convnet-min.js",function(){console.log("All JS loaded");var t=[];t.push({type:"input",out_sx:40,out_sy:40,out_depth:1}),t.push({type:"conv",sx:5,filters:8,stride:1,pad:2,activation:"relu"}),t.push({type:"pool",sx:2,stride:2}),t.push({type:"conv",sx:5,filters:16,stride:1,pad:2,activation:"relu"}),t.push({type:"pool",sx:3,stride:3}),t.push({type:"softmax",num_classes:26}),(mycnnModel=new convnetjs.Net).makeLayers(t),nn=new convnetjs.SGDTrainer(mycnnModel,{method:"adadelta",momentum:.9,batch_size:10,l2_decay:.001}),loadData()})})}function loadData(){loadMNIST(function(t){mnist=t,console.log("All data loaded into mnist object:");for(var e=0;e<NOTRAIN;e++)rotateImageBy90(mnist.train_images[e]);for(e=0;e<NOTEST;e++)rotateImageBy90(mnist.test_images[e]);AB.removeLoading()})}function rotateImageBy90(t){for(var e=0;e<PIXELS;e++)for(var n=e;n<PIXELS;n++){var o=e*PIXELS+n,s=n*PIXELS+e,i=t[o];t[o]=t[s],t[s]=i}}function getmycnnInputs(t){for(var e=new convnetjs.Vol(28,28,1,0),n=0;n<PIXELSSQUARED;n++)e.w[n]=t[n];return e}function getImage(t){let e=createImage(PIXELS,PIXELS);e.loadPixels();for(let n=0;n<PIXELSSQUARED;n++){let o=t[n],s=4*n;e.pixels[s+0]=o,e.pixels[s+1]=o,e.pixels[s+2]=o,e.pixels[s+3]=255}return e.updatePixels(),e}function getInputs(t){let e=[];for(let n=0;n<PIXELSSQUARED;n++){let o=t[n];e[n]=o/255}return e}function trainit(t){let e=mnist.train_images[train_index],n=mnist.train_labels[train_index];if(t){var o=getImage(e);image(o,0,ZOOMPIXELS+50,ZOOMPIXELS,ZOOMPIXELS),image(o,ZOOMPIXELS+50,ZOOMPIXELS+50,PIXELS,PIXELS)}let s=getInputs(e);train_inputs=getmycnnInputs(s),nn.train(train_inputs,n),thehtml=" trainrun: "+trainrun+"<br> no: "+train_index,AB.msg(thehtml,4),++train_index==NOTRAIN&&(train_index=0,console.log("finished trainrun: "+trainrun),trainrun++)}function testit(){let t=mnist.test_images[test_index],e=mnist.test_labels[test_index],n=getInputs(t);test_inputs=getmycnnInputs(n);let o=findMax(mycnnModel.forward(test_inputs).w);total_tests++,o==e&&total_correct++;let s=total_correct/total_tests*100;thehtml=" testrun: "+testrun+"<br> no: "+total_tests+" <br> correct: "+total_correct+"<br> score: "+greenspan+s.toFixed(2)+"</span>",AB.msg(thehtml,6),++test_index==NOTEST&&(console.log("finished testrun: "+testrun+" score: "+s.toFixed(2)),testrun++,test_index=0,total_tests=0,total_correct=0)}function find12(t){let e=0,n=0,o=0,s=0;for(let i=0;i<t.length;i++)t[i]>=o?(n=e,s=o,e=i,o=t[i]):t[i]>=s&&(n=i,s=t[i]);return[e,n]}function findMax(t){let e=0,n=0;for(let o=0;o<t.length;o++)t[o]>n&&(e=o,n=t[o]);return e}function draw(){if(void 0!==mnist){if(background("black"),strokeWeight(1),stroke("yellow"),rect(0,0,ZOOMPIXELS,ZOOMPIXELS),textSize(10),textAlign(CENTER),text("You can draw DOODLE here",ZOOMPIXELS/2,ZOOMPIXELS/2),do_training){for(let t=0;t<TRAINPERSTEP;t++)trainit(0==t);for(let t=0;t<TESTPERSTEP;t++)testit()}if(demo_exists&&(drawDemo(),guessDemo()),doodle_exists&&(drawDoodle(),guessDoodle()),mouseIsPressed){var t=ZOOMPIXELS+20;mouseX<t&&mouseY<t&&pmouseX<t&&pmouseY<t&&(mousedrag=!0,doodle_exists=!0,doodle.stroke("white"),doodle.strokeWeight(DOODLE_THICK),doodle.line(mouseX,mouseY,pmouseX,pmouseY))}else mousedrag&&(mousedrag=!1,doodle.filter(BLUR,DOODLE_BLUR))}}function makeDemo(){demo_exists=!0;var t=AB.randomIntAtoB(0,NOTEST-1);demo=mnist.test_images[t];var e=mnist.test_labels[t];thehtml="Test image no: "+t+"<br>Classification: "+ALPHABETS[e-1]+"<br>",AB.msg(thehtml,8)}function drawDemo(){var t=getImage(demo);image(t,0,canvasheight-ZOOMPIXELS,ZOOMPIXELS,ZOOMPIXELS),image(t,ZOOMPIXELS+50,canvasheight-ZOOMPIXELS,PIXELS,PIXELS)}function guessDemo(){let t=getInputs(demo);demo_inputs=t;let e=findMax(mycnnModel.forward(demo_inputs).w);thehtml=" We classify it as: "+greenspan+ALPHABETS[e-1]+"</span>",AB.msg(thehtml,9)}function drawDoodle(){let t=doodle.get();image(t,0,0,ZOOMPIXELS,ZOOMPIXELS),image(t,ZOOMPIXELS+50,0,PIXELS,PIXELS)}function guessDoodle(){let t=doodle.get();t.resize(PIXELS,PIXELS),t.loadPixels();let e=[];for(let n=0;n<PIXELSSQUARED;n++)e[n]=t.pixels[4*n]/255;doodle_inputs=getmycnnInputs(e);let n=find12(mycnnModel.forward(doodle_inputs).w);thehtml=" We classify it as: "+greenspan+ALPHABETS[n[0]-1]+"</span> <br> No.2 guess is: "+greenspan+ALPHABETS[n[1]-1]+"</span>",AB.msg(thehtml,2)}function wipeDoodle(){doodle_exists=!1,doodle.background("black")}function showInputs(t){var e="";for(let n=0;n<t.length;n++){n%PIXELS==0&&(e+="\n"),e=e+" "+t[n].toFixed(2)}console.log(e)}function loadMNIST(t){let e={},n={train_images:"/uploads/dheera0704/emnist-letters-train-images-idx3-ubyte.bin",train_labels:"/uploads/jagtaps2/emnist-letters-train-labels-idx1-ubyte.bin",test_images:"/uploads/jagtaps2/emnist-letters-test-images-idx3-ubyte.bin",test_labels:"/uploads/jagtaps2/emnist-letters-test-labels-idx1-ubyte.bin"};return Promise.all(Object.keys(n).map(async t=>{e[t]=await loadFile(n[t])})).then(()=>t(e))}async function loadFile(t){let e,n,o=await fetch(t).then(t=>t.arrayBuffer()),s=4,i=new DataView(o,0,4*s),a=new Array(s).fill().map((t,e)=>i.getUint32(4*e,!1));if(2049==a[0])e="label",n=1,s=2;else{if(2051!=a[0])throw new Error("Unknown file type "+a[0]);e="image",n=a[2]*a[3]}let r=new Uint8Array(o,4*s);if("image"==e){dataArr=[];for(let t=0;t<a[1];t++)dataArr.push(r.subarray(n*t,n*(t+1)));return dataArr}return r}