Code viewer for World: Character recognition neur...

// Cloned by Sunil Jagtap on 1 Dec 2021 from World "Character recognition neural network" by "Coding Train" project 
// Please leave this clone trail here.
 

// Port of Character recognition neural network from here:
// https://github.com/CodingTrain/Toy-Neural-Network-JS/tree/master/examples/mnist
// with many modifications 


// --- defined by MNIST - do not change these ---------------------------------------

const PIXELS        = 28;                       // images in data set are tiny 
const PIXELSSQUARED = PIXELS * PIXELS;
const PIXELS_DROP = 24;
const CROPPED_DOODLE_PIXELS = 24;
// number of training and test exemplars in the data set:
const NOTRAIN = 60000;
const NOTEST  = 10000;



//--- can modify all these --------------------------------------------------

// no of nodes in network 
const noinput  = PIXELSSQUARED;
const nohidden = 128;
const nooutput = 10;

const learningrate = 0.1;   // default 0.1  

// should we train every timestep or not 
let do_training = true;

// how many to train and test per timestep 
const TRAINPERSTEP = 30;
const TESTPERSTEP  = 5;

// multiply it by this to magnify for display 
const ZOOMFACTOR    = 7;                        
const ZOOMPIXELS    = ZOOMFACTOR * PIXELS; 

// 3 rows of
// large image + 50 gap + small image    
// 50 gap between rows 

const canvaswidth = ( PIXELS + ZOOMPIXELS ) + 50;
const canvasheight = ( ZOOMPIXELS * 3 ) + 100;


const DOODLE_THICK = 16;    // thickness of doodle lines 
const DOODLE_BLUR = 0;      // blur factor applied to doodles 


let mnist;      
// all data is loaded into this 
// mnist.train_images
// mnist.train_labels
// mnist.test_images
// mnist.test_labels


let nn;
let cnn;
let trainrun = 1;
let train_index = 0;

let testrun = 1;
let test_index = 0;
let total_tests = 0;
let total_correct = 0;

// images in LHS:
let doodle, demo;
let doodle_exists = false;
let demo_exists = false;

let mousedrag = false;      // are we in the middle of a mouse drag drawing?  


// save inputs to global var to inspect
// type these names in console 
var train_inputs, test_inputs, demo_inputs, doodle_inputs;


// Matrix.randomize() is changed to point to this. Must be defined by user of Matrix. 

function randomWeight()
{
    return ( AB.randomFloatAtoB ( -0.5, 0.5 ) );
            // Coding Train default is -1 to 1
}    


// make run header bigger
AB.headerCSS ( { "max-height": "95vh" } );




//--- start of AB.msgs structure: ---------------------------------------------------------
// We output a serious of AB.msgs to put data at various places in the run header 
var thehtml;

  // 1 Doodle header 
  thehtml = "<hr> <h1> 1. Doodle </h1> Top row: Doodle (left) and shrunk (right). <br> " +
        " Draw your doodle in top LHS. <button onclick='wipeDoodle();' class='normbutton' >Clear doodle</button> <br> ";
   AB.msg ( thehtml, 1 );

  // 2 Doodle variable data (guess)
  
  // 3 Training header
  thehtml = "<hr> <h1> 2. Training </h1> Middle row: Training image magnified (left) and original (right). <br>  " +
        " <button onclick='do_training = false;' class='normbutton' >Stop training</button> <br> ";
  AB.msg ( thehtml, 3 );
     
  // 4 variable training data 
  
  // 5 Testing header
  thehtml = "<h3> Hidden tests </h3> " ;
  AB.msg ( thehtml, 5 );
           
  // 6 variable testing data 
  
  // 7 Demo header 
  thehtml = "<hr> <h1> 3. Demo </h1> Bottom row: Test image magnified (left) and  original (right). <br>" +
        " The network is <i>not</i> trained on any of these images. <br> " +
        " <button onclick='makeDemo();' class='normbutton' >Demo test image</button> <br> ";
   AB.msg ( thehtml, 7 );
   
  // 8 Demo variable data (random demo ID)
  // 9 Demo variable data (changing guess)
  
const greenspan = "<span style='font-weight:bold; font-size:x-large; color:darkgreen'> "  ;

//--- end of AB.msgs structure: ---------------------------------------------------------




function setup() 
{
  createCanvas ( canvaswidth, canvasheight );

  doodle = createGraphics ( ZOOMPIXELS, ZOOMPIXELS );       // doodle on larger canvas 
  doodle.pixelDensity(1);
  
// JS load other JS 
// maybe have a loading screen while loading the JS and the data set 

      AB.loadingScreen();
 $.getScript("/uploads/codingtrain/matrix.js", function() {
        $.getScript("/uploads/codingtrain/nn.js", function() {
            $.getScript("/uploads/codingtrain/mnist.js", function() {
                $.getScript("/uploads/jagtaps2/webcnn.js", function() {
                    $.getScript("uploads/jagtaps2/mathutils.js", function() {
                        $.ajax({
                            url: "/uploads/jagtaps2/cnn_mnist_accuracy.json",
                            dataType: "json",
                            success: JSONLoaded
                        })
                    })
                })
            })
        })
    })
}

function JSONLoaded(t) {
    cnnFromJSON(t); console.log("JSON Loaded!");
    console.log(t); 
    console.log("All JS loaded"); 
    (nn = new NeuralNetwork(noinput, nohidden, nooutput)).setLearningRate(learningrate);
    loadData();
}
// load data set from local file (on this server)

	
function cnnFromJSON(t) {
     cnn = new WebCNN;
     void 0 != t.momentum && cnn.setMomentum(t.momentum);
     void 0 != t.lambda && cnn.setLambda(t.lambda);
     void 0 != t.learningRate && cnn.setLearningRate(t.learningRate);
    for (var e = 0; e < t.layers.length; ++e) {
        let n = t.layers[e];
        console.log(n), cnn.newLayer(n)
    }
    for (e = 0; e < t.layers.length; ++e) {
        let n = t.layers[e];
        switch (t.layers[e].type) {
            case LAYER_TYPE_CONV:
            case LAYER_TYPE_FULLY_CONNECTED:
                void 0 != n.weights && void 0 != n.biases && cnn.layers[e].setWeightsAndBiases(n.weights, n.biases)
        }
    }
    cnn.initialize()
}
function getInObjectFormat(t, e) {
    return {
        width: e,
        height: e,
        data: getImage(randCropUtil(t, e), e).pixels
    }
}
function preprocessingImage(t, e) {
    let n = [];
    for (let o = 0; o < e; o++) {
        n[o] = [];
        for (let i = 0; i < e; i++) n[o][i] = t[4 * (o * e + i)]
    }
    for (var o = Number.MAX_VALUE, s = Number.MAX_VALUE, a = -1, r = -1, l = 0; l < n.length; l++) {
        var d = n[l].indexOf(255),
            m = n[l].lastIndexOf(255);
        d >= 0 && d < s && (s = d), m >= 0 && m > r && (r = m), d >= 0 && l < o && (o = l), d >= 0 && l > a && (a = l)
    }
    let u = Math.floor((e - r - s) / 2),
        c = Math.floor((e - a - o) / 2),
        g = Array(e).fill().map(() => Array(e).fill(0));
    for (i = o; i <= a; i++)
        for (j = s; j <= r; j++) g[i + c][j + u] = n[i][j];
    let h = [];
    for (let t = 0; t < e; t++)
        for (let n = 0; n < e; n++) h[t * e + n] = g[t][n];
    return h
}
function randCropUtil(t, e) {
    const n = PIXELS - e;
    return cropImage(t, e, Math.floor(Math.random() * n), Math.floor(Math.random() * n))
}
function cropImage(t, e, n = 2, o = 2) {
    let i = [],
        s = n + e,
        a = o + e;
    for (let e = n; e < s; e++)
        for (let n = o; n < a; n++) i.push(t[e * PIXELS + n]);
    return i
}

function loadData()    
{
  loadMNIST ( function(data)    
  {
    mnist = data;
    console.log ("All data loaded into mnist object:")
    console.log(mnist);
    AB.removeLoading();     // if no loading screen exists, this does nothing 
  });
}


function getImage(t, e = PIXELS) {
    let n = createImage(PIXELS, PIXELS);
    n.loadPixels();
    for (let o = 0; o < e * e; o++) {
        let e = t[o],
            i = 4 * o;
        n.pixels[i + 0] = e, n.pixels[i + 1] = e, n.pixels[i + 2] = e, n.pixels[i + 3] = 255
    }
    return n.updatePixels(), n
}

function getInputs ( img )      // convert img array into normalised input array 
{
    let inputs = [];
    for (let i = 0; i < PIXELSSQUARED ; i++)          
    {
        let bright = img[i];
        inputs[i] = bright / 255;       // normalise to 0 to 1
    } 
    return ( inputs );
}

 

function trainit (show)        // train the network with a single exemplar, from global var "train_index", show visual on or off 
{
  let img   = mnist.train_images[train_index];
  let label = mnist.train_labels[train_index];
  
  // optional - show visual of the image 
  if (show)                
  {
    var theimage = getImage ( img );    // get image from data array 
    image ( theimage,   0,                ZOOMPIXELS+50,    ZOOMPIXELS,     ZOOMPIXELS  );      // magnified 
    image ( theimage,   ZOOMPIXELS+50,    ZOOMPIXELS+50,    PIXELS,         PIXELS      );      // original
  }

  // set up the inputs
  let inputs = getInputs ( img );       // get inputs from data array 

  // set up the outputs
  let targets = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0];
  targets[label] = 1;       // change one output location to 1, the rest stay at 0 

  // console.log(train_index);
  // console.log(inputs);
  // console.log(targets);

  train_inputs = inputs;        // can inspect in console 
  nn.train ( inputs, targets );

  thehtml = " trainrun: " + trainrun + "<br> no: " + train_index ;
  AB.msg ( thehtml, 4 );

  train_index++;
  if ( train_index == NOTRAIN ) 
  {
    train_index = 0;
    console.log( "finished trainrun: " + trainrun );
    trainrun++;
  }
}


function testit()    // test the network with a single exemplar, from global var "test_index"
{ 
  let img   = mnist.test_images[test_index];
  let label = mnist.test_labels[test_index];

  // set up the inputs
  let inputs = getInputs ( img ); 
  
  test_inputs = inputs;        // can inspect in console 
  let prediction    = nn.predict(inputs);       // array of outputs 
  let guess         = findMax(prediction);      // the top output 

  total_tests++;
  if (guess == label)  total_correct++;

  let percent = (total_correct / total_tests) * 100 ;
  
  thehtml =  " testrun: " + testrun + "<br> no: " + total_tests + " <br> " +
        " correct: " + total_correct + "<br>" +
        "  score: " + greenspan + percent.toFixed(2) + "</span>";
  AB.msg ( thehtml, 6 );

  test_index++;
  if ( test_index == NOTEST ) 
  {
    console.log( "finished testrun: " + testrun + " score: " + percent.toFixed(2) );
    testrun++;
    test_index = 0;
    total_tests = 0;
    total_correct = 0;
  }
}




//--- find no.1 (and maybe no.2) output nodes ---------------------------------------
// (restriction) assumes array values start at 0 (which is true for output nodes) 


function find12 (t)         // return array showing indexes of no.1 and no.2 values in array 
{
   let e = 0,
        n = 0,
        o = 0,
        i = 0;
    for (let n = 0; n < 10; n++) {
        let i = t[0].getValue(0, 0, n);
        i > o && (e = n, o = i)
    }
    for (let o = 0; o < 10; o++) {
        let s = t[0].getValue(0, 0, o);
        e != o && s > i && (n = o, i = s)
    }
    return [e, n]
//   let no1 = 0;
//   let no2 = 0;
//   let no1value = 0;     
//   let no2value = 0;
  
//   for (let i = 0; i < a.length; i++) 
//   {
//     if (a[i] > no1value)   // new no1
//     {
//       // old no1 becomes no2
//       no2 = no1;
//       no2value = no1value;
//       // now put in the new no1
//       no1 = i;
//       no1value = a[i];
//     }
//     else if (a[i] > no2value)  // new no2 
//     {
//       no2 = i;
//       no2value = a[i];
//     }
//   }
//   var b = [ no1, no2 ];
//   return b;
}

// just get the maximum - separate function for speed - done many times 
// find our guess - the max of the output nodes array

function findMax (a)        
{
  let no1 = 0;
  let no1value = 0;     
  
  for (let i = 0; i < a.length; i++) 
  {
    if (a[i] > no1value) 
    {
      no1 = i;
      no1value = a[i];
    }
  }
  
  return no1;
}




// --- the draw function -------------------------------------------------------------
// every step:
 
function draw() 
{
  // check if libraries and data loaded yet:
  if ( typeof mnist == 'undefined' ) return;


// how can we get white doodle on black background on yellow canvas?
//        background('#ffffcc');    doodle.background('black');

      background ('black');
    
if ( do_training )    
{
  // do some training per step 
    for (let i = 0; i < TRAINPERSTEP; i++) 
    {
       trainit(0 == i);// show only one per step - still flashes by  
     
    }
    
  // do some testing per step 
    for (let i = 0; i < TESTPERSTEP; i++) 
      testit();
}

  // keep drawing demo and doodle images 
  // and keep guessing - we will update our guess as time goes on 
  
  if ( demo_exists )
  {
    drawDemo();
    guessDemo();
  }
  if ( doodle_exists ) 
  {
    drawDoodle();
    guessDoodle();
  }


// detect doodle drawing 
// (restriction) the following assumes doodle starts at 0,0 

  if ( mouseIsPressed )         // gets called when we click buttons, as well as if in doodle corner  
  {
     // console.log ( mouseX + " " + mouseY + " " + pmouseX + " " + pmouseY );
     var MAX = ZOOMPIXELS + 20;     // can draw up to this pixels in corner 
     if ( (mouseX < MAX) && (mouseY < MAX) && (pmouseX < MAX) && (pmouseY < MAX) )
     {
        mousedrag = true;       // start a mouse drag 
        doodle_exists = true;
        doodle.stroke('white');
        doodle.strokeWeight( DOODLE_THICK );
        doodle.line(mouseX, mouseY, pmouseX, pmouseY);      
     }
  }
  else 
  {
      // are we exiting a drawing
      if ( mousedrag )
      {
            mousedrag = false;
            // console.log ("Exiting draw. Now blurring.");
            doodle.filter (BLUR, DOODLE_BLUR);    // just blur once 
            //   console.log (doodle);
      }
  }
}




//--- demo -------------------------------------------------------------
// demo some test image and predict it
// get it from test set so have not used it in training

function makeDemo()
{
    demo_exists = true;
    let  i = AB.randomIntAtoB ( 0, NOTEST - 1 );  
    
    demo        = mnist.test_images[i];     
    let label   = mnist.test_labels[i];
    
   thehtml =  "Test image no: " + i + "<br>" + 
            "Classification: " + label + "<br>" ;
   AB.msg ( thehtml, 8 );
   
   // type "demo" in console to see raw data 
}


function drawDemo()
{
    let theimage = getImage ( demo );
     //  console.log (theimage);
     
    image ( theimage,   0,                canvasheight - ZOOMPIXELS,    ZOOMPIXELS,     ZOOMPIXELS  );      // magnified 
    image ( theimage,   ZOOMPIXELS+50,    canvasheight - ZOOMPIXELS,    PIXELS,         PIXELS      );      // original
}
function guessDemo()
{
   let inputs = getInputs ( demo ); 
   
  demo_inputs = inputs;  // can inspect in console 
  
  let prediction    = nn.predict(inputs);       // array of outputs 
  let guess         = findMax(prediction);      // the top output 

   thehtml =   " We classify it as: " + greenspan + guess + "</span>" ;
   AB.msg ( thehtml, 9 );
}

//--- doodle -------------------------------------------------------------

function drawDoodle()
{
    // doodle is createGraphics not createImage
    let theimage = doodle.get();
    // console.log (theimage);
    
    image ( theimage,   0,                0,    ZOOMPIXELS,     ZOOMPIXELS  );      // original 
    image ( theimage,   ZOOMPIXELS+50,    0,    PIXELS,         PIXELS      );      // shrunk
}
function guessDoodle() 
{
   // doodle is createGraphics not createImage
//   let img = doodle.get();
  
//   img.resize ( PIXELS, PIXELS );     
//   img.loadPixels();

//   // set up inputs   
//   let inputs = [];
//   for (let i = 0; i < PIXELSSQUARED ; i++) 
//   {
//      inputs[i] = img.pixels[i * 4] / 255;
//   }
  
//   doodle_inputs = inputs;     // can inspect in console 
// console.log(inputs);
//   // feed forward to make prediction 
//   let prediction    = find12(cnn.classifyImages([requireFormat(centerImage(img.pixels, PIXELS), PIXELS_DROP)]));;       // array of outputs 
//   let b             = find12(prediction);       // get no.1 and no.2 guesses  

//   thehtml =   " We classify it as: " + greenspan + b[0] + "</span> <br>" +
//             " No.2 guess is: " + greenspan + b[1] + "</span>";
//   AB.msg ( thehtml, 2 );
 let t = doodle.get();
    t.resize(PIXELS, PIXELS), t.loadPixels();
    let e = [];
    for (let n = 0; n < PIXELSSQUARED; n++) e[n] = t.pixels[4 * n] / 255;
    doodle_inputs = e;
    let n = find12(cnn.classifyImages([getInObjectFormat(preprocessingImage(t.pixels, PIXELS), CROPPED_DOODLE_PIXELS)]));
    thehtml = " We classify it as: " + greenspan + n[0] + "</span> <br> No.2 guess is: " + greenspan + n[1] + "</span>";
    AB.msg(thehtml, 2);
    }


function wipeDoodle()    
{
    doodle_exists = false;
    doodle.background('black');
}




// --- debugging --------------------------------------------------
// in console
// showInputs(demo_inputs);
// showInputs(doodle_inputs);


function showInputs ( inputs )
// display inputs row by row, corresponding to square of pixels 
{
    var str = "";
    for (let i = 0; i < inputs.length; i++) 
    {
      if ( i % PIXELS == 0 )    str = str + "\n";                                   // new line for each row of pixels 
      var value = inputs[i];
      str = str + " " + value.toFixed(2) ; 
    }
    console.log (str);
}