Code viewer for World: doodle recognizer using cnn
// Cloned by robby on 19 Nov 2022 from World "Character recognition neural network" by "Coding Train" project 
// Please leave this clone trail here.
 

// Port of Character recognition neural network from here:
// https://github.com/CodingTrain/Toy-Neural-Network-JS/tree/master/examples/mnist
// with many modifications 


// --- defined by MNIST - do not change these ---------------------------------------

const PIXELS        = 28;                       // images in data set are tiny
const PIXELS_X      = 28;                       // Rohan: change image height
const PIXELS_Y      = 28;                       // Rohan: change image width
const PIXELSSQUARED = PIXELS * PIXELS;
const DIM           = 1; // Rohan: change 1 for grayscale and 3 for RGB

// number of training and test exemplars in the data set:
const NOTRAIN = 124800; // change if needed
const NOTEST  = 20800;  // change if needed



//--- can modify all these --------------------------------------------------

// no of nodes in network
const noinput  = PIXELSSQUARED;
const nohidden = 64;
const nooutput = 10;

const learningrate = 0.1;   // default 0.1

// should we train every timestep or not
let do_training = true;

// how many to train and test per timestep
const TRAINPERSTEP = 15;
const TESTPERSTEP  = 5;

// multiply it by this to magnify for display
const ZOOMFACTOR    = 7;
const ZOOMPIXELS    = ZOOMFACTOR * PIXELS;

// 3 rows of
// large image + 50 gap + small image
// 50 gap between rows

const canvaswidth = ( PIXELS + ZOOMPIXELS ) + 50;
const canvasheight = ( ZOOMPIXELS * 3 ) + 100;


const DOODLE_THICK = 18;    // thickness of doodle lines
const DOODLE_BLUR = 3;      // blur factor applied to doodles


let mnist;
// all data is loaded into this
// mnist.train_images
// mnist.train_labels
// mnist.test_images
// mnist.test_labels

//Rohan: Define variable
let cnn;
let TrainingCnn;
let cnnMod;
//Rohan: Character or alhpabet which need to be recognised
let alpha =["a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"]
//let alpha = ["A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M", "N", "O", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z"];

let trainrun = 1;
let train_index = 0;
let testrun = 1;
let test_index = 0;
let total_tests = 0;
let total_correct = 0;

// images in LHS:
let doodle, demo;
let doodle_exists = false;
let demo_exists = false;

let mousedrag = false;      // are we in the middle of a mouse drag drawing?


// save inputs to global var to inspect
// type these names in console
var train_inputs, test_inputs, demo_inputs, doodle_inputs;


// Matrix.randomize() is changed to point to this. Must be defined by user of Matrix.

function randomWeight()
{
    return ( AB.randomFloatAtoB ( -0.5, 0.5 ) );
            // Coding Train default is -1 to 1
}


// make run header bigger
AB.headerCSS ( { "max-height": "95vh" } );


//--- start of AB.msgs structure: ---------------------------------------------------------
// We output a serious of AB.msgs to put data at various places in the run header
var thehtml;

  // 1 Doodle header
  //Rohan: clear and Redrawing doodle
  thehtml = "<hr> <h1> 1. Doodle </h1> Top row: Doodle (left) and shrunk (right). <br> " +
        " Draw your doodle in top LHS. <button onclick='cleanDoodle();' class='normbutton' >Clear and Redo</button> <br> " ;
   AB.msg ( thehtml, 1 );

  // 2 Doodle variable data (guess)

  // 3 Training header
  //Rohan: Pausing and Restarting the process of training
  thehtml = "<hr> <h1> 2. Training </h1> Middle row: Training image magnified (left) and original (right). <br>  " +
        " <button onclick='do_training = false;' class='normbutton' >Pause training</button> " +
        " <button onclick='do_training = true;' class='normbutton' >Resume training</button> <br> ";
  AB.msg ( thehtml, 3 );

  // 4 variable training data

  // 5 Testing header
  thehtml = "<h3> Hidden tests </h3> " ;
  AB.msg ( thehtml, 5 );

  // 6 variable testing data

  // 7 Demo header
  thehtml = "<hr> <h1> 3. Demo </h1> Bottom row: Test image magnified (left) and  original (right). <br>" +
        " The network is <i>not</i> trained on any of these images. <br> " +
        " <button onclick='makeDemo();' class='normbutton' >Demo test image</button> <br> ";
   AB.msg ( thehtml, 7 );

  // 8 Demo variable data (random demo ID)
  // 9 Demo variable data (changing guess)

const bluespan = "<span style='font-weight:bold; font-size:large; color:darkblue'> "  ;


//--- end of AB.msgs structure: ---------------------------------------------------------




function setup()
{
  createCanvas ( canvaswidth, canvasheight );

  doodle = createGraphics ( ZOOMPIXELS, ZOOMPIXELS );       // doodle on larger canvas
  doodle.pixelDensity(1);
  //Rohan: clean the doodle by using the below function to draw
  cleanDoodle();


// JS load other JS
// maybe have a loading screen while loading the JS and the data set

      AB.loadingScreen();

 $.getScript ( "/uploads/codingtrain/matrix.js", function()
 {
   //Rohan: upload the convolutional neural netowrk which is to be used in building the model
   //Ref:https://cs.stanford.edu/people/karpathy/convnetjs
   $.getScript ( "/uploads/rohanb456/convnet.js", function() 
   {
        //Rohan: upload the dataset
        $.getScript ( "/uploads/rohanb456/mnist.js", function()
        {
            console.log ("All JS Files loaded");
          //Rohan: Implement Simple CNN with 1 input layer, 3 convo and pooling layer and 1 output layer
          let layers = [];

        //-------input layer------
        //Rohan: input(ip) layer with 28*28 pixels and is in grayscale(out_depth:1) if color then out_depth:3
        layers.push({type:"input", out_sx:PIXELS_X, out_sy:PIXELS_Y, out_depth:DIM}); 
        //Rohan: output(op) Volume is of size 28x28x1
        
        //------hidden layer------
        //first layer
        //can use different activation functions like relu,sigmoid,softmax etc
        layers.push({type:"conv", sx:5, filters:8, stride:1, pad:2, activation:"tanh"});
        //Rohan: convolutional layer that has 8 kernels, and size 5*5 along with 2 pixels padded on all the sides to make output of same size. Also have tanh Activation fuction.
        //Rohan: output(op) Volume is of size 28x28x8
        layers.push({type:"pool", sx:2, stride:2});
        //Rohan: Pooling layer that has 2 strides, and size  of 2*2
        //Rohan: output(op) Volume is of size 14x14x8
        //second layer
        layers.push({type:"conv", sx:5, filters:16, stride:1, pad:2, activation:"tanh"});
        //Rohan: convolutional layer that has 16 kernels, and size 5*5 along with 2 pixels padded on all the sides to make output of same size. Also have tanh Activation fuction.
        //Rohan: output(op) Volume is of size 14x14x16 
        layers.push({type:"pool", sx:2, stride:2});
        //Rohan: Pooling layer that has 2 strides, and size  of 2*2
        //third layer
        layers.push({type:"conv", sx:5, filters:20, stride:1, pad:2, activation:"tanh"});
        //Rohan: convolutional layer that has 20 kernels, and size 5*5 along with 2 pixels padded on all the sides to make output of same size. Also have tanh Activation fuction.
        //Rohan: output(op) Volume is of size 7x7x20 
        layers.push({type:"pool", sx:2, stride:2});
        //Rohan: Pooling layer that has 2 strides, and size  of 2*2
        //Rohan: output(op) Volume is of size 3x3x20
        //layers.push({type:'fc', num_neurons:20, activation:'tanh'});
        //------output layer-------
        layers.push({type:"softmax", num_classes:26});
        //Rohan: output(op) layer whose Volume is of size 1x1x26 along with softmax activation function as we dealing with more than two class or character recogntion
           
          /*
          
          //Rohan: Tried to implement LeNet-5 but failed mainly due to high processing time requirement as the model is built to work on 32*32 size data 
          
          layers.push({type : "input",
          out_sx : 32,
          out_sy : 32,
          out_depth : 1});
        layers.push({type : "conv",
          sx : 5,
          filters : 6,
          stride : 1,
          activation : "tanh"});
        layers.push({type : "pool",
          sx : 2,
          stride : 2});
        layers.push({type : "conv",
          sx : 5,
          filters : 16,
          stride : 1,
          activation : "tanh"});
        layers.push({type : "pool",
          sx : 2,
          stride : 2});
        layers.push({type : "conv",
          sx : 5,
          filters : 120,
          stride : 1,
          activation : "tanh"});
        layers.push({type:'fc', activation:'tanh'});
        layers.push({type:'fc', activation:'tanh'});
        layers.push({type:'softmax', num_classes:26});
      */  
     
        //Rohan: build a simple netowrk using convnetjs
        cnnMod = new convnetjs.Net();
        
        //var scores = net.forward(cnnMod); // pass forward through network
        // to check the score
        //console.log('score for class 0 is assigned:'  + scores.w[0]);
        
        //Rohan: specifing the layers in the cnnMod
        cnnMod.makeLayers(layers);
        //Rohan: Stocastic Gradient Descent Trainer is used with momentum 0.9, 5 batch size and l2_decay 0.0001
        //rohan: add learning_rate parameter by replacing method parameter i.e  learning_rate:0.1,0.001,0.0001
        TrainingCnn = new convnetjs.SGDTrainer(cnnMod, {method : "adadelta", momentum: 0.9, batch_size : 5, l2_decay : 0.0001});
        //Rohan: Calling the loadData function
            loadData();
        });
   });
 });
}



// load data set from local file (on this server)

function loadData()
{
  loadMNIST (function(data){

    mnist = data;
    //Rohan: rotate the images 
    let index = 0;
    for (; index < NOTRAIN; index++) {
      
      imageRotation(mnist.train_images[index]);
    }
    
    for (index = 0; index < NOTEST; index++) {
      imageRotation(mnist.test_images[index]);
    }
    console.log ("All data loaded into Emnist object.")
    console.log(mnist);
    AB.removeLoading();     // if no loading screen exists, this does nothing
  });
}


function getImage ( img )      // make a P5 image object from a raw data array
{
    let theimage  = createImage (PIXELS, PIXELS);    // make blank image, then populate it
    theimage.loadPixels();

    for (let i = 0; i < PIXELSSQUARED ; i++)
    {
        let bright = img[i];
        let index = i * 4;
        theimage.pixels[index + 0] = bright;
        theimage.pixels[index + 1] = bright;
        theimage.pixels[index + 2] = bright;
        theimage.pixels[index + 3] = 255;
    }
    theimage.updatePixels();
    return theimage;
}


function getInputs ( img )      // convert img array into normalised input array
{
    let inputs = [];
    for (let i = 0; i < PIXELSSQUARED ; i++)
    {
        let bright = img[i];
        inputs[i] = bright / 255;       // normalise to 0 to 1
    }
    return ( inputs );
}

//Rohan: below function rotates the images which helps to build a more reliable model
function imageRotation(img) {
  for (let e = 0; e < PIXELS; e++) {
    for (let f = e; f < PIXELS; f++) {
      let a = e * PIXELS + f;
      let b = f * PIXELS + e;
      let c = img[a];
      img[a] = img[b];
      img[b] = c;
    }
  }
} 


function trainit (show)        // train the network with a single exemplar, from global var "train_index", show visual on or off
{
  let img   = mnist.train_images[train_index];
  let label = mnist.train_labels[train_index];

  // optional - show visual of the image
  if (show)
  {
    var theimage = getImage ( img );    // get image from data array
    image ( theimage,   0,                ZOOMPIXELS+50,    ZOOMPIXELS,     ZOOMPIXELS  );      // magnified
    image ( theimage,   ZOOMPIXELS+50,    ZOOMPIXELS+50,    PIXELS,         PIXELS      );      // original
  }

  // set up the inputs
  let inputs = getInputs ( img );       // get inputs from data array
  train_inputs = inputs;

  {
    //Rohan: fetchcnnip creates input activations required for trainer.
    let set = fetchcnnip(inputs);
    //Rohan: pass exemplar and their labels for classification
    TrainingCnn.train(set, label);
  }

         // can inspect in console

  thehtml = " trainrun: " + trainrun + "<br> no: " + train_index ;
  AB.msg ( thehtml, 4 );

  train_index++;
  if ( train_index == NOTRAIN )
  {
    train_index = 0;
    console.log( "finished trainrun: " + trainrun );
    trainrun++;
  }
}
 //Rohan: creating a volume of inp activations with 28*28 size and with 0 intialization.
function fetchcnnip(t) {
  var x = new convnetjs.Vol(28, 28, 1, 0);

  for (var j = 0; j < PIXELSSQUARED; j++) {
    x.w[j] = t[j];
  }

  return x;
}

function testit()    // test the network with a single exemplar, from global var "test_index"
{
  let img   = mnist.test_images[test_index];
  let label = mnist.test_labels[test_index];

  // set up the inputs
  let inputs = getInputs ( img );
  let cnninput = fetchcnnip(inputs);
  //get the test image and find maximum weight
  test_inputs = inputs;        // can inspect in console
  let place = findMax(cnnMod.forward(cnninput).w);
  var img1 = getImage(img);
  image(img1, 0, ZOOMPIXELS + 50, ZOOMPIXELS, ZOOMPIXELS);
  image(img1, ZOOMPIXELS + 50, ZOOMPIXELS + 50, PIXELS, PIXELS);

  total_tests++;
  if (place == label)  total_correct++;

  let percent = (total_correct / total_tests) * 100 ;

  thehtml =  " testrun: " + testrun + "<br> no: " + total_tests + " <br> " +
        " correct: " + total_correct + "<br>" +
        "  score: " + bluespan + percent.toFixed(2) + "</span>";
  AB.msg ( thehtml, 6 );

  test_index++;
  if ( test_index == NOTEST )
  {
    console.log( "finished testrun: " + testrun + " score: " + percent.toFixed(2) );
    testrun++;
    test_index = 0;
    total_tests = 0;
    total_correct = 0;
  }
}




//--- find no.1 (and maybe no.2) output nodes ---------------------------------------
// (restriction) assumes array values start at 0 (which is true for output nodes)


function find12 (a)         // return array showing indexes of no.1 and no.2 values in array
{

  let no1 = 0;
  let no2 = 0;
  let no1value = 0;
  let no2value = 0;

  for (let i = 0; i < a.length; i++)
  {
    if (a[i] > no1value)   // new no1
    {
      // old no1 becomes no2
      no2 = no1;
      no2value = no1value;
      // now put in the new no1
      no1 = i;
      no1value = a[i];
    }
    else if (a[i] > no2value)  // new no2
    {
      no2 = i;
      no2value = a[i];
    }
  }

  var b = [ no1, no2 ];
  return b;
}



// just get the maximum - separate function for speed - done many times
// find our guess - the max of the output nodes array

function findMax (a)
{
  let no1 = 0;
  let no1value = 0;

  for (let i = 0; i < a.length; i++)
  {
    if (a[i] > no1value)
    {
      no1 = i;
      no1value = a[i];
    }
  }

  return no1;
}




// --- the draw function -------------------------------------------------------------
// every step:

function draw()
{
  // check if libraries and data loaded yet:
  if ( typeof mnist == 'undefined' ) return;

    background ('black');
    strokeWeight(1);
    stroke('blue');
    rect(0,0,ZOOMPIXELS,ZOOMPIXELS);
    textSize(15);
    textAlign(CENTER);
    text("Please Draw",ZOOMPIXELS/2,ZOOMPIXELS/2);


if ( do_training )
{

  // do some training per step
    for (let i = 0; i < TRAINPERSTEP; i++)
    {
      if (i === 0)    trainit(true);    // show only one per step - still flashes by
      else           trainit(false);
    }

  // do some testing per step
    for (let i = 0; i < TESTPERSTEP; i++)
      testit();
}

  // keep drawing demo and doodle images
  // and keep guessing - we will update our guess as time goes on

  if ( demo_exists )
  {
    drawDemo();
    guessDemo();
  }
  if ( doodle_exists )
  {
    drawDoodle();
    guessDoodle();
  }


// detect doodle drawing
// (restriction) the following assumes doodle starts at 0,0

  if ( mouseIsPressed )         // gets called when we click buttons, as well as if in doodle corner
  {
     // console.log ( mouseX + " " + mouseY + " " + pmouseX + " " + pmouseY );
     var MAX = ZOOMPIXELS + 20;     // can draw up to this pixels in corner
     if ( (mouseX < MAX) && (mouseY < MAX) && (pmouseX < MAX) && (pmouseY < MAX) )
     {
        mousedrag = true;       // start a mouse drag
        doodle_exists = true;
        doodle.stroke('red');
        strokeJoin(ROUND);
        doodle.strokeWeight( DOODLE_THICK );
        doodle.line(mouseX, mouseY, pmouseX, pmouseY);
     }
  }
  else
  {
      // are we exiting a drawing
      if ( mousedrag )
      {
            mousedrag = false;
            // console.log ("Exiting draw. Now blurring.");
            doodle.filter (BLUR, DOODLE_BLUR);    // just blur once
            //   console.log (doodle);
      }
  }
}




//--- demo -------------------------------------------------------------
// demo some test image and predict it
// get it from test set so have not used it in training


function makeDemo()
{
    demo_exists = true;
    var  i = AB.randomIntAtoB ( 0, NOTEST - 1 );

    demo        = mnist.test_images[i];
    var label   = mnist.test_labels[i];

   thehtml =  "Test image no: " + i + "<br>" +
            "Classification: " + alpha[label - 1] + "<br>" ;
   AB.msg ( thehtml, 8 );

   // type "demo" in console to see raw data
}


function drawDemo()
{
    var theimage = getImage ( demo );
     //  console.log (theimage);

    image ( theimage,   0,                canvasheight - ZOOMPIXELS,    ZOOMPIXELS,     ZOOMPIXELS  );      // magnified
    image ( theimage,   ZOOMPIXELS+50,    canvasheight - ZOOMPIXELS,    PIXELS,         PIXELS      );      // original
}


function guessDemo()
{
   let inputs = getInputs ( demo );

  demo_inputs = inputs;  // can inspect in console
//Rohan: fetch input and find the max weight
  let cnninput = fetchcnnip(inputs);
  let j = findMax(cnnMod.forward(cnninput).w);

   thehtml =   " We classify it as: " + bluespan + alpha[j-1] + "</span>" ;
   AB.msg ( thehtml, 9 );
}




//--- doodle -------------------------------------------------------------

function drawDoodle()
{
    // doodle is createGraphics not createImage
    let theimage = doodle.get();
    // console.log (theimage);

    image ( theimage,   0,                0,    ZOOMPIXELS,     ZOOMPIXELS  );      // original
    image ( theimage,   ZOOMPIXELS+20,    0,    PIXELS,         PIXELS      );      // shrunk
}


function guessDoodle()
{
   // doodle is createGraphics not createImage
   let img = doodle.get();

  img.resize ( PIXELS, PIXELS );
  img.loadPixels();

  // set up inputs
  let inputs = [];
  for (let i = 0; i < PIXELSSQUARED ; i++)
  {
     inputs[i] = img.pixels[i * 4] / 255;
  }

  doodle_inputs = inputs;     // can inspect in console

//Rohan: shows two most possible predictions
let cnninput = fetchcnnip(inputs);
  let a = find12(cnnMod.forward(cnninput).w);
  thehtml =   " Our 1st Guess is: " + bluespan + alpha[a[0] - 1] +  "</span> <br>" +
            " Our 2nd Guess is: " + bluespan + alpha[a[1] - 1] + "</span>";
  AB.msg ( thehtml, 2 );
}


function cleanDoodle()
{
    doodle_exists = false;
    doodle.background('black');
}




// --- debugging --------------------------------------------------
// in console
// showInputs(demo_inputs);
// showInputs(doodle_inputs);


function showInputs ( inputs )
// display inputs row by row, corresponding to square of pixels
{
    var str = "";
    for (let i = 0; i < inputs.length; i++)
    {
      if ( i % PIXELS === 0 )    str = str + "\n";                                   // new line for each row of pixels
      var value = inputs[i];
      str = str + " " + value.toFixed(2) ;
    }
    console.log (str);
}