Code viewer for World: Assignment 2 - Justin Fajou

// Cloned by J Faj on 26 Nov 2019 from World "Character recognition neural network" by "Coding Train" project 
// Please leave this clone trail here.
 

// Port of Character recognition neural network from here:
// https://github.com/CodingTrain/Toy-Neural-Network-JS/tree/master/examples/mnist
// with many modifications 


// --- defined by MNIST - do not change these ---------------------------------------

const PIXELS        = 28;                       // images in data set are tiny 
const PIXELSSQUARED = PIXELS * PIXELS;

// number of training and test exemplars in the data set:
const NOTRAIN = 60000;
const NOTEST  = 10000;



//--- can modify all these --------------------------------------------------

// no of nodes in network 
const noinput  = PIXELSSQUARED;
const nohidden = 128;
const nooutput = 10;

const learningrate = 0.2;   // default 0.1  

// should we train every timestep or not 
let do_training = true;

// how many to train and test per timestep 
const TRAINPERSTEP = 30;
const TESTPERSTEP  = 5;

// multiply it by this to magnify for display 
const ZOOMFACTOR    = 7;                        
const ZOOMPIXELS    = ZOOMFACTOR * PIXELS; 

// 3 rows of
// large image + 50 gap + small image    
// 50 gap between rows 

//**********************************************************************************
//Changed by Justin
//Changed the width and height of the canvas to landscape
//const canvaswidth = ( PIXELS + ZOOMPIXELS ) + 50;
//const canvasheight = ( ZOOMPIXELS * 3 ) + 100;
const canvasheight = ( PIXELS + ZOOMPIXELS );
const canvaswidth = ( ZOOMPIXELS * 3 ) + 150;
//*********************************************************************************

const DOODLE_THICK = 18;    // thickness of doodle lines 
const DOODLE_BLUR = 3;      // blur factor applied to doodles 


let mnist;      
// all data is loaded into this 
// mnist.train_images
// mnist.train_labels
// mnist.test_images
// mnist.test_labels


let nn;

let trainrun = 1;
let train_index = 0;

let testrun = 1;
let test_index = 0;
let total_tests = 0;
let total_correct = 0;

// images in LHS:
let doodle, demo;
let doodle_exists = false;
let demo_exists = false;

let mousedrag = false;      // are we in the middle of a mouse drag drawing?  

//**************************************************************
// Added by Justin - new global variables
let topTwo = [];
let correct = 0;
let incorrect = 0;
var numberlist;
let trackScore = [];

let learningDecay = [0.2, 0.1, 0.05, 0.01];
let learnIndex = 0;

const augmentImage = true;
const moveTop = true;
const moveLeft = false;
//**************************************************************

// save inputs to global var to inspect
// type these names in console 
var train_inputs, test_inputs, demo_inputs, doodle_inputs;


// Matrix.randomize() is changed to point to this. Must be defined by user of Matrix. 

function randomWeight()
{
    return ( AB.randomFloatAtoB ( -0.5, 0.5 ) );
            // Coding Train default is -1 to 1
}    



// CSS trick 
// make run header bigger 
 $("#runheaderbox").css ( { "max-height": "95vh" } );



//--- start of AB.msgs structure: ---------------------------------------------------------
// We output a serious of AB.msgs to put data at various places in the run header 
/*var thehtml;

  // 1 Doodle header 
  thehtml = "<hr> <h1> 1. Doodle </h1> Top row: Doodle (left) and shrunk (right). <br> " +
        " Draw your doodle in top LHS. <button onclick='wipeDoodle();' class='normbutton' >Clear doodle</button> <br> ";
   AB.msg ( thehtml, 1 );

  // 2 Doodle variable data (guess)
  
  // 3 Training header
  thehtml = "<hr> <h1> 2. Training </h1> Middle row: Training image magnified (left) and original (right). <br>  " +
        " <button onclick='do_training = false;' class='normbutton' >Stop training</button> <br> ";
  AB.msg ( thehtml, 3 );
     
  // 4 variable training data 
  
  // 5 Testing header
  thehtml = "<h3> Hidden tests </h3> " ;
  AB.msg ( thehtml, 5 );
           
  // 6 variable testing data 
  
  // 7 Demo header 
  thehtml = "<hr> <h1> 3. Demo </h1> Bottom row: Test image magnified (left) and  original (right). <br>" +
        " The network is <i>not</i> trained on any of these images. <br> " +
        " <button onclick='makeDemo();' class='normbutton' >Demo test image</button> <br> ";
   AB.msg ( thehtml, 7 );
   
  // 8 Demo variable data (random demo ID)
  // 9 Demo variable data (changing guess)*/
  
const greenspan = "<span style='font-weight:bold; font-size:x-large; color:darkgreen'> "  ;

//--- end of AB.msgs structure: ---------------------------------------------------------


function setup() 
{
  AB.headerRHS();
  createCanvas ( canvaswidth, canvasheight );
  
  //Import charting to use for displaying a graph of the accuracy over time
  $.getScript('https://cdn.jsdelivr.net/npm/chart.js@2.9.3/dist/Chart.min.js', function () {
      alert('Load was performed');
  });
  

  AB.newDiv ( "doodle" );
  $("#doodle").css({
      "padding-top": "200", 
      "padding-left": "10",
      "padding-bottom": "10",
      "float":"left",
      });
  
  $("#doodle").html( "<h1>Doodle</h1> " +
        "<button onclick='wipeDoodle();' class='normbutton' >Clear doodle</button> <br></p>" +
        "<p>Draw you doodle above.<br>" +
        "Select correct answer below.<br>" +
        "Classify:<span id='numberlist'></span> &nbsp &nbsp" +
        "<button onclick='updateDoodlePercent();' class='normbutton' >OK</button>" +
        "<div id='doodleData'></div><br>" +
        "<div id='doodlePercent'></div><br>");
  
  AB.newDiv ( "demo" );
  $("#demo").css({
      "padding-top": "200", 
      "padding-left": "40",
      "padding-bottom": "10",
      "float":"left",
      });
  
  $("#demo").html( "<h1>Demo</h1> " +
        "<button onclick='makeDemo();' class='normbutton' >Demo test image</button> <br></p>" +
        "<p>Test image magnified (left) <br>" + "and original (right)<br>" +
        " The network is <i>not</i> trained on any   " + "<br> of these images. <br> " +
        "<div id='demoData'></div>");
        
  AB.newDiv ( "train" );
  $("#train").css({
      "padding-top": "200", 
      "padding-left": "20",
      "padding-bottom": "10",
      "float":"left"
      //"border-left": "thick solid black"
      });

  $("#train").html( "<h1> Training</h1> " +
        "<button onclick='do_training = false;' class='normbutton' >Stop training</button></p>" +
        "<p>Training image magnified (left) <br>" + "and original (right)<br>" +
        "<div id='trainData'></div><br>" +
        "<div id='testData'></div>");
        
  AB.newDiv ( "chart" );
  $("#chart").css({
      "padding-top": "1", 
      "padding-left": "1",
      "padding-bottom": "1",
      "float":"left"
      //"border-left": "thick solid black"
      });

  // Create dropdown
  numberlist = createSelect();           
  numberlist.parent('numberlist');
  // Add all the numbers
  for (var i = 0; i < 10; i++) 
    numberlist.option(i);
  
  console.log("NUMBER LIST VALUE" + numberlist.value());

  doodle = createGraphics ( ZOOMPIXELS, ZOOMPIXELS );       // doodle on larger canvas 
  doodle.pixelDensity(1);
  
// JS load other JS 
// maybe have a loading screen while loading the JS and the data set 

 AB.loadingScreen();
 
 $.getScript ( "/uploads/codingtrain/matrix.js", function()
 {
   $.getScript ( "/uploads/jfajou/nn.js", function() // Updated by Justin.  Copied my own version to "Uploads"
   {
        $.getScript ( "/uploads/codingtrain/mnist.js", function()
        {
            console.log ("All JS loaded");
            nn = new NeuralNetwork(  noinput, nohidden, nooutput );
            nn.setLearningRate ( learningrate );
            //nn.setActivationFunction(relu);
            loadData();
        });
   });
 });
}


// load data set from local file (on this server)

function loadData()    
{
  loadMNIST ( function(data)    
  {
    mnist = data;
    console.log ("All data loaded into mnist object:")
    console.log(mnist);
    AB.removeLoading();     // if no loading screen exists, this does nothing 
  });
}



function getImage ( img )      // make a P5 image object from a raw data array   
{
    let theimage  = createImage (PIXELS, PIXELS);    // make blank image, then populate it 
    theimage.loadPixels();        
    
    for (let i = 0; i < PIXELSSQUARED ; i++) 
    {
        let bright = img[i];
        let index = i * 4;
        theimage.pixels[index + 0] = bright;
        theimage.pixels[index + 1] = bright;
        theimage.pixels[index + 2] = bright;
        theimage.pixels[index + 3] = 255;
    }
    
    theimage.updatePixels();
    return theimage;
}


function getInputs ( img )      // convert img array into normalised input array 
{
    let inputs = [];
    for (let i = 0; i < PIXELSSQUARED ; i++)          
    {
        let bright = img[i];
        inputs[i] = bright / 255;       // normalise to 0 to 1
    } 

    if (augmentImage == true)
        moveImage (inputs);

    return ( inputs );
}

//************************************************
//Added by Justin
function moveImage (inputs)
{
//Put the image into a 2D array of 28*28
    let array2D = [];
    var i = 0;
    for (l = inputs.length + 1; (i + PIXELS) < l; i += PIXELS) {
        array2D.push(inputs.slice(i, i + PIXELS));
    }

//Move all "black" rows from the top to the bottom
//If the sum of a row is zero, then move it to the bottom
    if (moveTop == true)
    {
        var sum= array2D.map( function(row){
            return row.reduce(function(a,b){ return a + b; }, 0);
        });

        let zeroArr
        let tempArr
        for (let i = 0; i < sum.length; i++) 
        {
            if (sum[i] == 0)
            {
                zeroArr = array2D.slice(0,1);
                tempArr = array2D.slice(1);
                array2D = tempArr.concat(zeroArr);
            }
            else
                break;
        }
    }

    //Now sum the columns
    if (moveLeft == true)
    {
        var sum2= array2D.map(function(row, i) {
            return array2D.map(function(row) {
              return row[i]; }
            ).reduce(function(a, b) { return a+b; }, 0);
        });

        let zeroCol;
        for (let i=0; i < sum2.length; i++)
        {
            if (sum2[i] == 0)
            {
                zeroCol = removeCol(array2D, 0);
                //Now add the column to the end
                for (let j=0; j < array2D.length; j++)
                    array2D[j].push(0);
            }
            else
                break;
        }   
    }
    //console.log(sum2);
    //console.log(array2D);
    //noLoop();

    //Flatten out the 2D array to send to the neural network
    inputs = array2D.flat();
}

function removeCol(arr2d, colIndex) 
{
    for (var i = 0; i < arr2d.length; i++) {
        var row = arr2d[i];
        row.splice(colIndex, 1);
    }
    return arr2d;
}

//End Update - Justin
//*******************************************************


function trainit (show)        // train the network with a single exemplar, from global var "train_index", show visual on or off 
{
  let img   = mnist.train_images[train_index];
  let label = mnist.train_labels[train_index];
  
  // optional - show visual of the image 
  if (show)                
  {
    var theimage = getImage ( img );    // get image from data array 
    //image ( theimage,   0,                0,    ZOOMPIXELS,     ZOOMPIXELS  );      // magnified 
    //image ( theimage,   ZOOMPIXELS,    0,    PIXELS,         PIXELS      );      // original
//***********************************************************************************
//Changed by Justin
//Updated where the training images appear on the canvas
    image ( theimage,   (ZOOMPIXELS * 2) + 120,                0,    ZOOMPIXELS,     ZOOMPIXELS  );      // magnified
    image ( theimage,   (ZOOMPIXELS * 3) + 120,    0,    PIXELS,         PIXELS      );      // original
//**********************************************************************************
  }

  // set up the inputs
  let inputs = getInputs ( img );       // get inputs from data array 

  // set up the outputs
  let targets = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0];
  targets[label] = 1;       // change one output location to 1, the rest stay at 0 

  train_inputs = inputs;        // can inspect in console 
  nn.train ( inputs, targets );


  thehtml = " trainrun: " + trainrun + "<br> no: " + train_index ;
  //AB.msg ( thehtml, 4 );
  
  $("#trainData").html(thehtml);

  train_index++;
  if ( train_index == NOTRAIN ) 
  {
    train_index = 0;
    console.log( "finished trainrun: " + trainrun );
    trainrun++;
  }
}


function testit()    // test the network with a single exemplar, from global var "test_index"
{ 
  let img   = mnist.test_images[test_index];
  let label = mnist.test_labels[test_index];

  // set up the inputs
  let inputs = getInputs ( img ); 
  
  test_inputs = inputs;        // can inspect in console 
  let prediction    = nn.predict(inputs);       // array of outputs 
  let guess         = findMax(prediction);      // the top output 

  total_tests++;
  if (guess == label)  total_correct++;

  let percent = (total_correct / total_tests) * 100 ;
  
  thehtml =  " testrun: " + testrun + "<br> no: " + total_tests + " <br> " +
        " correct: " + total_correct + "<br>" +
        "  score: " + greenspan + percent.toFixed(2) + "</span>";
  //AB.msg ( thehtml, 6 );

  $("#testData").html("<h4> Hidden tests </h4>" + thehtml);

  test_index++;
  if ( test_index == NOTEST ) 
  {
    console.log( "finished testrun: " + testrun + " score: " + percent.toFixed(2) );
    testrun++;
    test_index = 0;
    total_tests = 0;
    total_correct = 0;
  }
  
  return percent.toFixed(2)
}




//--- find no.1 (and maybe no.2) output nodes ---------------------------------------
// (restriction) assumes array values start at 0 (which is true for output nodes) 
function find12 (a)         // return array showing indexes of no.1 and no.2 values in array 
{
  let no1 = 0;
  let no2 = 0;
  let no1value = 0;     
  let no2value = 0;
  
  for (let i = 0; i < a.length; i++) 
  {
    if (a[i] > no1value) 
    {
      no1 = i;
      no1value = a[i];
    }
    else if (a[i] > no2value) 
    {
      no2 = i;
      no2value = a[i];
    }
  }
  
  var b = [ no1, no2 ];
  return b;
}


// just get the maximum - separate function for speed - done many times 
// find our guess - the max of the output nodes array

function findMax (a)        
{
  let no1 = 0;
  let no1value = 0;     
  
  for (let i = 0; i < a.length; i++) 
  {
    if (a[i] > no1value) 
    {
      no1 = i;
      no1value = a[i];
    }
  }
  
  return no1;
}




// --- the draw function -------------------------------------------------------------
// every step:
 
function draw() 
{
  // check if libraries and data loaded yet:
  if ( typeof mnist == 'undefined' ) return;

// how can we get white doodle on black background on yellow canvas?
//        background('#ffffcc');    doodle.background('black');
  background ('black');
  
//*****************************************************************************
//Added by Justin - Start
//Divide the areas properly
  strokeWeight(10);
  stroke('white');
  line(ZOOMPIXELS+50,0,ZOOMPIXELS + 50,ZOOMPIXELS + 50) ;
  line(ZOOMPIXELS+ZOOMPIXELS+110,0,ZOOMPIXELS + ZOOMPIXELS + 110,ZOOMPIXELS + 50) ;


  //Call the Chart function
  //chartTraining();
//Added by Justin - End
//*****************************************************************************    

if ( do_training )    
{
  // do some training per step 
    for (let i = 0; i < TRAINPERSTEP; i++) 
    {
      if (i == 0)    trainit(true);    // show only one per step - still flashes by  
      else           trainit(false);
    }
    
  // do some testing per step 
    for (let i = 0; i < TESTPERSTEP; i++) 
      var percent = testit();
}

//****************************************************************
// Added by Justin

  //This was to help me track the training accuracy over time
  if (train_index % 5000 < TRAINPERSTEP)
  {
      trackScore.push(percent);
  }

  if (train_index % 30000 < TRAINPERSTEP)
  {
      learnIndex += 1;
      if (learnIndex <= 3)
      {
        console.log("New learning rate " + learningDecay[learnIndex]);
        nn.setLearningRate ( learningDecay[learnIndex] );
      }
  }

//****************************************************************

  // keep drawing demo and doodle images 
  // and keep guessing - we will update our guess as time goes on 
  
  if ( demo_exists )
  {
    drawDemo();
    guessDemo();
  }
  if ( doodle_exists ) 
  {
    drawDoodle();
    guessDoodle();
  }


// detect doodle drawing 
// (restriction) the following assumes doodle starts at 0,0 

  if ( mouseIsPressed )         // gets called when we click buttons, as well as if in doodle corner  
  {
     //console.log ( mouseX + " " + mouseY + " " + pmouseX + " " + pmouseY );
     var MAX = ZOOMPIXELS + 20;     // can draw up to this pixels in corner
     if ( (mouseX < MAX) && (mouseY < MAX) && (pmouseX < MAX) && (pmouseY < MAX) )
     {
        //console.log ( mouseX + " " + mouseY + " " + pmouseX + " " + pmouseY );
        mousedrag = true;       // start a mouse drag 
        doodle_exists = true;
        doodle.stroke('white');
        doodle.strokeWeight( DOODLE_THICK );
        doodle.line(mouseX, mouseY, pmouseX, pmouseY);      
     }
  }
  else 
  {
      // are we exiting a drawing
      if ( mousedrag )
      {
            mousedrag = false;
            // console.log ("Exiting draw. Now blurring.");
            doodle.filter (BLUR, DOODLE_BLUR);    // just blur once 
            //   console.log (doodle);
      }
  }
}


/*
//Display a graph of the training rate to visually show the results for 2-3 epochs
function chartTraining(){
    
    
  $("#chart").html( "<canvas id='graph' width='200' height='200'></canvas> ");
  const ctx = document.getElementById('graph').getcontext
    
}
*/


//--- demo -------------------------------------------------------------
// demo some test image and predict it
// get it from test set so have not used it in training


function makeDemo()
{
    demo_exists = true;
    var  i = AB.randomIntAtoB ( 0, NOTEST - 1 );  
    
    demo        = mnist.test_images[i];     
    var label   = mnist.test_labels[i];
    
   thehtml =  "Test image no: " + i + "<br>" + 
            "Classification: " + label + "<br>" ;
   //AB.msg ( thehtml, 8 );
   
  $("#demoData").html(thehtml);
   
   // type "demo" in console to see raw data 
}


function drawDemo()
{
    var theimage = getImage ( demo );
     //  console.log (theimage);
     
//****************************************************************
//Changed by Justin
//Updated where the Demo image is displayed on the canvas
    image ( theimage,   ZOOMPIXELS + 60,           0,    ZOOMPIXELS,     ZOOMPIXELS  );      // magnified 
    image ( theimage,   ZOOMPIXELS + ZOOMPIXELS + 60,                     0,    PIXELS,         PIXELS      );      // original
    
//**************************************************************
}


function guessDemo()
{
   let inputs = getInputs ( demo ); 
   
  demo_inputs = inputs;  // can inspect in console 
  
  let prediction    = nn.predict(inputs);       // array of outputs 
  let guess         = findMax(prediction);      // the top output 

   thehtml =   " We classify it as: " + greenspan + guess + "</span>" ;
   
   //Commented out by Justin
   //AB.msg ( thehtml, 9 );
}




//--- doodle -------------------------------------------------------------

function drawDoodle()
{
    // doodle is createGraphics not createImage
    let theimage = doodle.get();
    //console.log (theimage);
    
    image ( theimage,   0,                0,    ZOOMPIXELS,     ZOOMPIXELS  );      // original
    image ( theimage,   ZOOMPIXELS+10,    0,    PIXELS,         PIXELS      );      // shrunk
}
      
      
function guessDoodle() 
{
   // doodle is createGraphics not createImage
   let img = doodle.get();
  
  img.resize ( PIXELS, PIXELS );     
  img.loadPixels();

  // set up inputs   
  let inputs = [];
  for (let i = 0; i < PIXELSSQUARED ; i++) 
  {
     inputs[i] = img.pixels[i * 4] / 255;
     //console.log ("Pixel is " + inputs[i]);
  }
  
  //Call this to move the Doodle to the top, to align with the training set
  moveImage (inputs);
  
  doodle_inputs = inputs;     // can inspect in console 

  // feed forward to make prediction 
  let prediction    = nn.predict(inputs);       // array of outputs 
  topTwo            = find12(prediction);       // get no.1 and no.2 guesses  

  thehtml =   " We classify it as: " + greenspan + topTwo[0] + "</span> <br>" +
            " No.2 guess is: " + greenspan + topTwo[1] + "</span>";
  //AB.msg ( thehtml, 2 );
  
  $("#doodleData").html(thehtml);
}


function wipeDoodle()    
{
    doodle_exists = false;
    doodle.background('black');
}

function updateDoodlePercent()
{
    if (doodle_exists == false) return;

    if (numberlist.value() == topTwo[0])
        correct += 1;
    else
        incorrect += 1;
        
    let percent = 0;
    percent = (correct / (incorrect + correct)) * 100 ; 
        
    thehtml = "Correct: " + correct + "<br>Incorrect: " + incorrect + "<br>" +
            "Score is: " + greenspan + percent.toFixed(2) + "</span>";
            
    $("#doodlePercent").html(thehtml);  
    
    wipeDoodle();
    
}

// --- debugging --------------------------------------------------
// in console
// showInputs(demo_inputs);
// showInputs(doodle_inputs);


function showInputs ( inputs )
// display inputs row by row, corresponding to square of pixels 
{
    var str = "";
    for (let i = 0; i < inputs.length; i++) 
    {
      if ( i % PIXELS == 0 )    str = str + "\n";                                   // new line for each row of pixels 
      var value = inputs[i];
      str = str + " " + value.toFixed(2) ; 
    }
    //console.log (str);
}