/*https://editor.p5js.org/p5/sketches/Simulate:_Koch
* @name Koch Curve
* @description Renders a simple fractal, the Koch snowflake. Each recursive level is drawn in sequence.
* By Daniel Shiffman
*/
let k;
function setup() {
createCanvas(710, 400);
frameRate(1); // Animate slowly
k = new KochFractal();
}
function draw() {
background(0);
// Draws the snowflake!
k.render();
// Iterate
k.nextLevel();
// Let's not do it more than 5 times. . .
if (k.getCount() > 5) {
k.restart();
}
}
// A class to describe one line segment in the fractal
// Includes methods to calculate midp5.Vectors along the line according to the Koch algorithm
class KochLine {
constructor(a,b) {
// Two p5.Vectors,
// start is the "left" p5.Vector and
// end is the "right p5.Vector
this.start = a.copy();
this.end = b.copy();
}
display() {
stroke(255);
line(this.start.x, this.start.y, this.end.x, this.end.y);
}
kochA() {
return this.start.copy();
}
// This is easy, just 1/3 of the way
kochB() {
let v = p5.Vector.sub(this.end, this.start);
v.div(3);
v.add(this.start);
return v;
}
// More complicated, have to use a little trig to figure out where this p5.Vector is!
kochC() {
let a = this.start.copy(); // Start at the beginning
let v = p5.Vector.sub(this.end, this.start);
v.div(3);
a.add(v); // Move to point B
v.rotate(-PI/3); // Rotate 60 degrees
a.add(v); // Move to point C
return a;
}
// Easy, just 2/3 of the way
kochD() {
let v = p5.Vector.sub(this.end, this.start);
v.mult(2/3.0);
v.add(this.start);
return v;
}
kochE() {
return this.end.copy();
}
}
// A class to manage the list of line segments in the snowflake pattern
class KochFractal {
constructor() {
this.start = createVector(0,height-20); // A p5.Vector for the start
this.end = createVector(width,height-20); // A p5.Vector for the end
this.lines = []; // An array to keep track of all the lines
this.count = 0;
this.restart();
}
nextLevel() {
// For every line that is in the arraylist
// create 4 more lines in a new arraylist
this.lines = this.iterate(this.lines);
this.count++;
}
restart() {
this.count = 0; // Reset count
this.lines = []; // Empty the array list
this.lines.push(new KochLine(this.start,this.end)); // Add the initial line (from one end p5.Vector to the other)
}
getCount() {
return this.count;
}
// This is easy, just draw all the lines
render() {
for(let i = 0; i < this.lines.length; i++) {
this.lines[i].display();
}
}
// This is where the **MAGIC** happens
// Step 1: Create an empty arraylist
// Step 2: For every line currently in the arraylist
// - calculate 4 line segments based on Koch algorithm
// - add all 4 line segments into the new arraylist
// Step 3: Return the new arraylist and it becomes the list of line segments for the structure
// As we do this over and over again, each line gets broken into 4 lines, which gets broken into 4 lines, and so on. . .
iterate(before) {
let now = []; // Create emtpy list
for(let i = 0; i < this.lines.length; i++) {
let l = this.lines[i];
// Calculate 5 koch p5.Vectors (done for us by the line object)
let a = l.kochA();
let b = l.kochB();
let c = l.kochC();
let d = l.kochD();
let e = l.kochE();
// Make line segments between all the p5.Vectors and add them
now.push(new KochLine(a,b));
now.push(new KochLine(b,c));
now.push(new KochLine(c,d));
now.push(new KochLine(d,e));
}
return now;
}
}