Code viewer for World: AbcD Character Recognition...

// Cloned by Colin McCabe on 20 Nov 2022 from World "Character recognition neural network" by "Coding Train" project 
// Please leave this clone trail here.
 

// Port of Character recognition neural network from here:
// https://github.com/CodingTrain/Toy-Neural-Network-JS/tree/master/examples/mnist
// with many modifications 


// --- defined by MNIST - do not change these ---------------------------------------

const PIXELS        = 28;                       // images in data set are tiny 
const PIXELSSQUARED = PIXELS * PIXELS;

// number of training and test exemplars in the data set:
const NOTRAIN = 124800;         // CMC Old value was 60000 need to increase for EMNIST training data images
const NOTEST  = 20800;          // CMC Old value was 10000 need to increase for EMNIST training data labels



//--- can modify all these --------------------------------------------------

// no of nodes in network 
const noinput  = PIXELSSQUARED;
const nohidden = 200;       // CMC changed to 200 for CNN test
const nooutput = 26;        // CMC  need to accoutn for the 26 letters in the alphabet

const learningrate = 0.1;   // default is 0.1  

// should we train every timestep or not 
let do_training = true;

// how many to train and test per timestep 
const TRAINPERSTEP = 30;
const TESTPERSTEP  = 5;

// multiply it by this to magnify for display 
const ZOOMFACTOR    = 7;                        
const ZOOMPIXELS    = ZOOMFACTOR * PIXELS; 

// 3 rows of
// large image + 50 gap + small image    
// 50 gap between rows 

//  CMC Additional constants and variables for CNN changes
let     modelImage;                 // CMC Holds a screen shot of the CNN model
const   imagePadding = 40;          // CMC need these extra flags to not duplicate the CNN classify function & to deal with scenario when both doodle & demo exist at the same time
const   imagePad = imagePadding/4;  // CMC Represents the aount of space between the Doodle, training and Demo images

const canvaswidth = ( PIXELS + ZOOMPIXELS ) + imagePadding;                  // CMC I added some padding to help make the images stand out and make it easier to see the boundaries of the doodle for drawing
const   modelImageSize = canvaswidth;                                            // CMC I may as well make the CNN model image graphic as big as possible
const canvasheight = ( ZOOMPIXELS * 3 ) + imagePadding + modelImageSize;			// CMC changed to 200 for CNN test

const trainingImageLocation = ZOOMPIXELS + ( imagePad * 2 );                            // CMC I wanted to have all the image placement calculations in one place here - this one is to place the training image on the canvas in the middle
const demoImageLocation = canvasheight - ZOOMPIXELS - modelImageSize - imagePad;        // CMC I wanted to have all the image placement calculations in one place here - this one is to place the demo image on the canvas at the bottom
const modelImageLocation = canvasheight - modelImageSize;                               // CMC I wanted to have all the image placement calculations in one place here - this one is to place the CNN graphic image on the canvas at the very bottom

const DOODLE_THICK = 18;    // thickness of doodle lines            CMC changed from 18 for test purposes
const DOODLE_BLUR = 2;      // blur factor applied to doodles       CMC changed from 3 for testing purposes


let mnist;      
// all data is loaded into this 
// mnist.train_images
// mnist.train_labels
// mnist.test_images
// mnist.test_labels


let nn;
let ml5nn;              // CMC to store the ML5 CNN model

let trainrun = 1;
let train_index = 0;

let testrun = 1;
let test_index = 0;
let total_tests = 0;
let total_correct = 0;

// images in LHS:
let doodle, demo;
let doodle_exists = false;
let demo_exists = false;
let demoInputs = [];

let mousedrag = false;      // are we in the middle of a mouse drag drawing?  


// save inputs to global var to inspect
// type these names in console 
var train_inputs, test_inputs, demo_inputs, doodle_inputs;


// Matrix.randomize() is changed to point to this. Must be defined by user of Matrix. 

function randomWeight()
{
    return ( AB.randomFloatAtoB ( -0.5, 0.5 ) );
            // Coding Train default is -1 to 1
}    


// make run header bigger
AB.headerCSS ( { "max-height": "95vh" } );          // CMC AB.headerCSS ( { "max-height": "95vh" } );




//--- start of AB.msgs structure: ---------------------------------------------------------
// We output a serious of AB.msgs to put data at various places in the run header 
var thehtml;

  // 1 Doodle header 
  thehtml = "<hr> <h2> 1. Doodle (Upper or Lower case)</h2> Top row: Doodle (left) and shrunk (right)." +
        " Draw your doodle in top LHS.&emsp; <button onclick='wipeDoodle();' class='normbutton' >Clear doodle</button> <br> ";          // CMC Modified to create more space e.g. heading from h1 to h2, I think it looks bettter with h3
   AB.msg ( thehtml, 1 );

  // 2 Doodle variable data (guess)
  
  // 3 Training header
  thehtml = "<hr> <h2> 2. Neural Network Training Performance</h2> Middle row: Training image magnified (left) and original (right).&emsp;&emsp;&emsp;" +// CMC Modified to create more space e.g. heading from h1 to h2, I think it looks bettter with h3
        " <button onclick='do_training = false;' class='normbutton' >Stop training</button> <br> ";
  AB.msg ( thehtml, 3 );
     
  // 4 variable training data 
  
  // 5 Testing header
  thehtml = "<h4> Hidden tests </h4> " ;
  AB.msg ( thehtml, 5 );
           
  // 6 variable testing data 
  
  // 7 Demo header 
  thehtml = "<hr> <h2> 3. Neural Network Demo Performance</h2> Bottom row: Test image magnified(left) & original(right).&emsp;&emsp;" +// CMC Modified to create more space e.g. heading from h1 to h2, I think it looks bettter with h3
  "   <button onclick='makeDemo();' class='normbutton' >Demo test image</button> <br> " +
        " The network is <i>not</i> trained on any of these images. <br> ";
   AB.msg ( thehtml, 7 );
   
  // 8 Demo variable data (random demo ID)
  // 9 Demo variable data (changing guess)
  
    // 10 CNN header 
  thehtml = "<hr> <h2> 4. Convolutional Neural Network(CNN) Performance</h2> Please enter a doodle or select the Demo test image button to see how the CNN performs.<br> " + // CMC Added this extra heading to provide informaiton on CNN performance
  "The network has been trained only on the training images, <i><b>not</b></i> the demo/test images.<br> ";
   AB.msg ( thehtml, 10 );
  
const greenspan = "<span style='font-weight:bold; font-size:x-large; color:darkgreen'> "  ;
const bluespan = "<span style='font-weight:bold; font-size:x-large; color:blue'> "  ;           // CMC used to highlight CNN data in blue instead of green

//--- end of AB.msgs structure: ---------------------------------------------------------

// CMC I added the preload function to ensure the CNN graphic was loaded and ready for setup to place it on the canvas
function preload() {
  modelImage = loadImage('/uploads/tesla/ModelSummarybeter.png');
}

// CMC I created this function merely to take out some of the clutter I added to the setup function 
function initialCanvasSetup(){
    createCanvas ( canvaswidth, canvasheight );
    background(128);                                    // CMC set the canvas background to grey to help highlight the Doodle, Training and Demo panels better
    fill(0);                                            // CMC Create the black background for Doodle and Demo images by using a black square painted on the canvas
    rect(10, 10, ZOOMPIXELS, ZOOMPIXELS);               // CMC Create the black background for Doodle and Demo images by using a black square painted on the canvas
    rect(10,    demoImageLocation,ZOOMPIXELS, ZOOMPIXELS);    // CMC place the Demo image in its new slightly adjusted location
    doodle = createGraphics ( ZOOMPIXELS, ZOOMPIXELS );       // doodle on larger canvas 
    doodle.pixelDensity(1);
    doodle.background(0);
  
    image(modelImage, 0, modelImageLocation, modelImageSize,modelImageSize);    // CMC put the CNN graphic on the canvas
    
}


function setup() 
{

    initialCanvasSetup();       // CMC created to clean the code up a bit

  
// JS load other JS 
// maybe have a loading screen while loading the JS and the data set 

      AB.loadingScreen();
 
 $.getScript ( "/uploads/codingtrain/matrix.js", function()
 {
   $.getScript ( "/uploads/codingtrain/nn.js", function()
   {
        $.getScript ( "/uploads/tesla/emnist.js", function()                    // CMC now loading the EMNIST data so pointing to a different set of files
        {
            console.log ("All JS loaded");
            nn = new NeuralNetwork(  noinput, nohidden, nooutput );
            nn.setLearningRate ( learningrate );
            loadData();
        });
   });
 });
 
   let options = {                                      // CMC Start of code to setup the CNN ML5 model
    inputs: [PIXELS , PIXELS , 1],                                // CMC define the options i.e. the size of the image of PIXELS * PIXELS and only a single channel of greyscale
    task: 'imageClassification',                                // CMC I only need the neural net to perform image classification
  };
  ml5nn = ml5.neuralNetwork(options);                       // CMC provide the setup configuraiton to the model

  let modelDetails = {                                      // CMC Now load the preconfigured CNN model
    model: '/uploads/tesla/model.json',                     // CMC specify the location of each model configuration file in my uploads directory
    metadata: '/uploads/tesla/model_meta.json',             // CMC specify the location of each model configuration file in my uploads directory
    weights: '/uploads/tesla/model.weights.bin'             // CMC specify the location of each model configuration file in my uploads directory
  }	

	resultsDiv = createDiv('Loading model.....');           // CMC print the loading model message on the page below the canvas it all happens so fast no one will ever see it
	resultsDiv.style('font-size', '14px');                  // CMC set the size of teh font below the CNN graphic for printing the messages
	resultsDiv.position(10,900);                            // CMC set the location where messages witll be printed (i.e. just below the CNN graphic)
  
	ml5nn.load(modelDetails, modelLoaded);                  // CMC now load the full model with all the configuration data
 
 
}
// CMC mode CNN Parts
// CMC simpel callback function to let us know that the model has actually loaded successfully
function modelLoaded() {
	console.log('CNN model ready.');
	resultsDiv.html('');
	resultsDiv.html('CNN Model Loaded Successfully!');              // CMC print the successfully loaded message on the page below the canvas
}

// CMC this function kicks off the classificaiton prcess for only the Demo image data
function classifyDemoImage() {
  // console.log('In classify image!');
    ml5nn.classify(   { image: demoInputs },gotDemoResults);              // CMC pass the Demo image data to the ML5 classifier
}

// CMC this function kicks off the classificaiton prcess for only the Doodle image data
function classifyDoodleImage() {
  // console.log('In classify image!');
    ml5nn.classify(   { image: doodle_inputs },gotDoodleResults);       // CMC pass the doodle image data to the ML5 classifier
}

// CMC This is the callback function to capture errors and display the results of the CNN model for the Demo image
function gotDemoResults(err, results) {
    if (err)
        {
            console.error(err);
            return;
        }

    let label = results[0].label;                                   // CMC capture the image prediction result
    let confidence = nf(100 * results[0].confidence, 2, 1);         // CMC capture the confidence level of the image prediction result
    thehtml =   "Classifies Demo as: " + bluespan + label +"</span>" +" with a confidence of: " + bluespan +confidence +" % </span> <br>" ;        // CMC Display the CNN prediciton results - Demo image
    AB.msg ( thehtml, 12 );                                         // CMC place it below the Doodle message
  
}
// CMC This is the callback function to capture errors and display the results of the CNN model for the Doodle image
function gotDoodleResults(err, results) {
    if (err)
        {
            console.error(err);
            return;
        }

    let label = results[0].label;                                   // CMC capture the image prediction result
    let confidence = nf(100 * results[0].confidence, 2, 1);         // CMC capture the confidence level of the image prediction result
    thehtml =   "Classifies Doodle as: " + bluespan + label +"</span>" +" with a confidence of: " + bluespan +confidence +" % </span><br> " ;        // CMC Display the CNN prediciton results - Doodle image
    AB.msg ( thehtml, 11 );                                         // CMC place it above the Demo message
}

// Core CNN Parts END here --- however  there are more minor modifications below


// load data set from local file (on this server)

function loadData()    
{
  loadMNIST ( function(data)    
  {
    mnist = data;
    console.log ("All data loaded into mnist object:")
    console.log(mnist);
    AB.removeLoading();     // if no loading screen exists, this does nothing 
  });
}



function getImage ( img )      // make a P5 image object from a raw data array   
{
    let theimage  = createImage (PIXELS, PIXELS);    // make blank image, then populate it 
    theimage.loadPixels();        
     
     let test=0;                            // CMC I didn't need to use test but didn't have a lot of time to clean up/optimize the code
    	for (let i = 0; i < PIXELS ; i++)
			{
				for (let j = 0; j < PIXELS ; j++) 
					{
						let bright = img[( i + (j*PIXELS))];                        // CMC modified to present on the canvas in the correct orientation (i.e. not twisted 90 degrees and flipped)
						let index = test*4;
						theimage.pixels[index + 0] = bright;
						theimage.pixels[index + 1] = bright;
						theimage.pixels[index + 2] = bright;
						theimage.pixels[index + 3] = 255; // CMC
						// console.log('Count = '+test+' ij = '+( i + (j*PIXELS))); 
					test++;
					    
					}
			}
    /*          CMC I commented out the original code but left it for comparison
   
    for (let i = 0; i < PIXELSSQUARED ; i++) 
    {
        let bright = img[i];
        let index = i * 4;
        theimage.pixels[index + 0] = bright;
        theimage.pixels[index + 1] = bright;
        theimage.pixels[index + 2] = bright;
        theimage.pixels[index + 3] = 255;
    }
  */ 
    theimage.updatePixels();
    return theimage;
}


function getInputs ( img )      // convert img array into normalised input array 
{
    let inputs = [];
    demoInputs = [];
    for (let i = 0; i < PIXELSSQUARED ; i++)          
    {
        let bright = img[i];
        demoInputs.push(img[i]);
        inputs[i] = bright / 255;       // normalise to 0 to 1
    } 
    return ( inputs );
}

/* CMC Not needed any more - too a different path
function getInputsTransform ( img )      // convert img array into normalised input array 
{
    let inputs = [];
    let test = 0;
    for (let i = 0; i < 28; i++) 
        {
		    for (let j = 0; j < 28; j++)
			    {
				    let bright = img[(i+(j*28))] ; 
				    inputs[test] = bright / 255;   
				    test++;
			    }
	    }
    return ( inputs );
}
*/

function trainit (show)        // train the network with a single exemplar, from global var "train_index", show visual on or off 
{
  let img   = mnist.train_images[train_index];
  let label = mnist.train_labels[train_index];
  
  label--;                          // CMC as the EMNIST alphabet label data starts at 1 not 0 I need to reindex to zero for it to be used correctly
  
  // optional - show visual of the image 
  if (show)                
  {
    var theimage = getImage ( img );    // get image from data array 
    image ( theimage,   10,                trainingImageLocation,    ZOOMPIXELS,     ZOOMPIXELS  );      // magnified       CMC updated for its new location 
    image ( theimage,   ZOOMPIXELS+25,    trainingImageLocation,    PIXELS,         PIXELS      );      // original       CMC updated for its new location 
  }

  // set up the inputs
  let inputs = getInputs ( img );       // get inputs from data array 

  // set up the outputs
  let targets = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ];    // CMC updated to account for 26 letters in the alphabet
  targets[label] = 1;       // change one output location to 1, the rest stay at 0 

  // console.log(train_index);
  // console.log(inputs);
  // console.log(targets);

  train_inputs = inputs;        // can inspect in console 
  nn.train ( inputs, targets );

  thehtml = " trainrun: " + trainrun + "&emsp;&emsp;no: " + train_index ;
  AB.msg ( thehtml, 4 );

  train_index++;
  if ( train_index == NOTRAIN ) 
  {
    train_index = 0;
    console.log( "finished trainrun: " + trainrun );
    trainrun++;
  }
}


function testit()    // test the network with a single exemplar, from global var "test_index"
{ 
  let img   = mnist.test_images[test_index];
  let label = mnist.test_labels[test_index];

    label--;                                    // CMC as the EMNIST alphabet label data starts at 1 not 0 I need to reindex to zero for it to be used correctly

  // set up the inputs
  let inputs = getInputs ( img );        // CMC I modifed getinputs to correct the image orientation
  
  test_inputs = inputs;        // can inspect in console
// console.log('Deomo data = '+test_inputs);
  let prediction    = nn.predict(inputs);       // array of outputs 
  let guess         = findMax(prediction);      // the top output 

  total_tests++;
  if (guess == label)  total_correct++;

  let percent = (total_correct / total_tests) * 100 ;
  
  thehtml =  " testrun: " + testrun + "&emsp;&emsp;no: " + total_tests + "&emsp;&emsp;" +
        " correct: " + total_correct + "&emsp;&emsp;" +
        "  score: " + greenspan + percent.toFixed(1) + "%</span>";
  AB.msg ( thehtml, 6 );

  test_index++;
  if ( test_index == NOTEST ) 
  {
    console.log( "finished testrun: " + testrun + " score: " + percent.toFixed(1)+"%" );
    testrun++;
    test_index = 0;
    total_tests = 0;
    total_correct = 0;
  }
}




//--- find no.1 (and maybe no.2) output nodes ---------------------------------------
// (restriction) assumes array values start at 0 (which is true for output nodes) 


function find12 (a)         // return array showing indexes of no.1 and no.2 values in array 
{
  let no1 = 0;
  let no2 = 0;
  let no1value = 0;     
  let no2value = 0;
  
  for (let i = 0; i < a.length; i++) 
  {
    if (a[i] > no1value)   // new no1
    {
      // old no1 becomes no2
      no2 = no1;
      no2value = no1value;
      // now put in the new no1
      no1 = i;
      no1value = a[i];
    }
    else if (a[i] > no2value)  // new no2 
    {
      no2 = i;
      no2value = a[i];
    }
  }
  
  var b = [ no1, no2 ];
  return b;
}



// just get the maximum - separate function for speed - done many times 
// find our guess - the max of the output nodes array

function findMax (a)        
{
  let no1 = 0;
  let no1value = 0;     
  
  for (let i = 0; i < a.length; i++) 
  {
    if (a[i] > no1value) 
    {
      no1 = i;
      no1value = a[i];
    }
  }
  
  return no1;
}




// --- the draw function -------------------------------------------------------------
// every step:
 
function draw() 
{
  // check if libraries and data loaded yet:
  if ( typeof mnist == 'undefined' ) return;


// how can we get white doodle on black background on yellow canvas?
//        background('#ffffcc');    doodle.background('black');

     // background (210);         // CMC background ('black');
    
if ( do_training )    
{
  // do some training per step 
    for (let i = 0; i < TRAINPERSTEP; i++) 
    {
      if (i == 0)    trainit(true);    // show only one per step - still flashes by  
      else           trainit(false);
    }
    
  // do some testing per step 
    for (let i = 0; i < TESTPERSTEP; i++) 
      testit();
}

  // keep drawing demo and doodle images 
  // and keep guessing - we will update our guess as time goes on 
  
  if ( demo_exists )
  {
    drawDemo();
    guessDemo();
    classifyDemoImage();                                            // Add the CNN classificaiton step for the Demo image
  }
  if ( doodle_exists ) 
  {
    drawDoodle();
    guessDoodle();
    classifyDoodleImage();                                            // Add the CNN classificaiton step for the Doodle image
  }


// detect doodle drawing 
// (restriction) the following assumes doodle starts at 0,0 

  if ( mouseIsPressed )         // gets called when we click buttons, as well as if in doodle corner  
  {
     // console.log ( mouseX + " " + mouseY + " " + pmouseX + " " + pmouseY );
     var MAX = ZOOMPIXELS + 20;     // can draw up to this pixels in corner 
     if ( (mouseX < MAX) && (mouseY < MAX) && (pmouseX < MAX) && (pmouseY < MAX) )
     {
        mousedrag = true;       // start a mouse drag 
        doodle_exists = true;
        doodle.stroke('white');
        doodle.strokeWeight( DOODLE_THICK );
        doodle.line(mouseX, mouseY, pmouseX, pmouseY);      
     }
  }
  else 
  {
      // are we exiting a drawing
      if ( mousedrag )
      {
            mousedrag = false;
            // console.log ("Exiting draw. Now blurring.");
            doodle.filter (BLUR, DOODLE_BLUR);    // just blur once 
            //   console.log (doodle);
      }
  }
}




//--- demo -------------------------------------------------------------
// demo some test image and predict it
// get it from test set so have not used it in training


function makeDemo()
{
    demo_exists = true;
    var  i = AB.randomIntAtoB ( 0, NOTEST - 1 );  
    
    demo        = mnist.test_images[i];     
    var label   = mnist.test_labels[i];
    let guessChar = convlab(label); // CMC
   thehtml =  "Test image no: " + i + "&emsp;&emsp;" + 
            "Classification: " +"<span style= 'font-weight:bold; font-size:x-large'>" +guessChar + "</span>&emsp;&emsp;" ;          // CMC added more spaces
   AB.msg ( thehtml, 8 );
   
   // type "demo" in console to see raw data 
}


function drawDemo()
{
    var theimage = getImage ( demo );         // CMC Only transform for Displaying
     //  console.log (theimage);
     
    image ( theimage,   10,                demoImageLocation,    ZOOMPIXELS,     ZOOMPIXELS  );      // magnified        CMC updated for its new location 
    image ( theimage,   ZOOMPIXELS+25,    demoImageLocation,    PIXELS,         PIXELS      );      // original       CMC updated for its new location 
}


function guessDemo()
{
   let inputs = getInputs ( demo );    // CMC
   
  demo_inputs = inputs;  // CMC Using demoInputs instead for the CNN inputs as the CNN does not need the normalization
  
  let prediction    = nn.predict(inputs);       // array of outputs 
  let guess         = findMax(prediction);      // the top output 
    let guessChar = convlab(guess + 1);         // CMC
   thehtml =   " We classify it as: " + greenspan + guessChar + "</span>" ;         // CMC
   AB.msg ( thehtml, 9 );
}




//--- doodle -------------------------------------------------------------

function drawDoodle()
{
    // doodle is createGraphics not createImage
    let theimage = doodle.get();
    // console.log (theimage);
    
    image ( theimage,   10,                10,    ZOOMPIXELS,     ZOOMPIXELS  );      // original        CMC updated for its new location 
    image ( theimage,   ZOOMPIXELS+25,    10,    PIXELS,         PIXELS      );      // shrunk       CMC updated for its new location 
}
      
      
function guessDoodle() 
{
   // doodle is createGraphics not createImage
   let img = doodle.get();
  
  img.resize ( PIXELS, PIXELS );     
  img.loadPixels();

  // set up inputs           CMC I left teh original code commented out
  
  let inputs = [];
  /*
  for (let i = 0; i < PIXELSSQUARED ; i++) 
  {
     inputs[i] = img.pixels[i * 4] / 255;
  }
  */
    let cnnInputs = [];             // CMC needed as the CNN is okay with un-normalized data
    let test = 0;             
    for (let i = 0; i < 28; i++) {           // CMC setup the new loop to capture the doodle data in the non-twisted and flipped format
		for (let j = 0; j < 28; j++)
			{
				inputs[test] = img.pixels[(i + (j * 28)) * 4] / 255;        // CMC transform into the correct orientaiton for the 1HNN model
				cnnInputs[test] = img.pixels[(i + (j * 28)) * 4];         // CMC transform into the correct orientaiton for the CNN model
				test++;
			}
	}
  
  doodle_inputs = cnnInputs;                                                 // CMC Repurposing for use as input to CNN 

  // feed forward to make prediction 
  let prediction    = nn.predict(inputs);       // array of outputs 
  let b             = find12(prediction);       // get no.1 and no.2 guesses  
    let guessChar0 = convlab(b[0] + 1);                                                     // CMC I just thought this was easier
    let guessChar1 = convlab(b[1] + 1);                                                     // CMC I just thought this was easier
  thehtml =   " We classify it as: " + greenspan + guessChar0 + "</span> <br>" +        // CMC update with guessChar0
            " No.2 guess is: " + greenspan + guessChar1 + "</span>";                 // CMC update with guessChar1
  AB.msg ( thehtml, 2 );
}


function wipeDoodle()    
{
    doodle_exists = false;
    doodle.background(0);
    fill(0);
  rect(10, 10, ZOOMPIXELS, ZOOMPIXELS);
}




// --- debugging --------------------------------------------------
// in console
// showInputs(demo_inputs);
// showInputs(doodle_inputs);


function showInputs ( inputs )
// display inputs row by row, corresponding to square of pixels 
{
    var str = "";
    for (let i = 0; i < inputs.length; i++) 
    {
      if ( i % PIXELS == 0 )    str = str + "\n";                                   // new line for each row of pixels 
      var value = inputs[i];
      str = str + " " + value.toFixed(2) ; 
    }
    console.log (str);
}


// CMC function used to display the label data in its alphabetic form I left the dummy at 0 as it worked for 95% of the scenarios and when it didn't it reminded me of me when it was displayed (& helped me fix the other 5%) ...
function convlab(num){
    var alphabet = ["Dummy","a","b","c","d","e","f","g","h","i","j","k","l","m","n","o","p","q","r","s","t","u","v","w","x","y","z"];
    return alphabet[num];
}