Code viewer for World: Character recognition neur...

// Cloned by Samaksh Chandra on 5 Dec 2021 from World "Character recognition neural network" by "Coding Train" project 
// Please leave this clone trail here.
 

// Port of Character recognition neural network from here:
// https://github.com/CodingTrain/Toy-Neural-Network-JS/tree/master/examples/mnist
// with many modifications 


// --- defined by MNIST - do not change these ---------------------------------------

const PIXELS        = 28;                       // images in data set are tiny 
const PIXELSSQUARED = PIXELS * PIXELS;

// number of training and test exemplars in the data set:
const NOTRAIN = 60000;
const NOTEST  = 10000;



//--- can modify all these --------------------------------------------------

// no of nodes in network 
const noinput  = PIXELSSQUARED;
const nohidden = 64;
const nooutput = 10;

const learningrate = 0.1;   // default 0.1  

// should we train every timestep or not 
let do_training = true;

// how many to train and test per timestep 
const TRAINPERSTEP = 30;
const TESTPERSTEP  = 5;

// multiply it by this to magnify for display 
const ZOOMFACTOR    = 7;                        
const ZOOMPIXELS    = ZOOMFACTOR * PIXELS; 

// 3 rows of
// large image + 50 gap + small image    
// 50 gap between rows 

const canvaswidth = ( PIXELS + ZOOMPIXELS ) + 50;
const canvasheight = ( ZOOMPIXELS * 3 ) + 100;


const DOODLE_THICK = 18;    // thickness of doodle lines 
const DOODLE_BLUR = 3;      // blur factor applied to doodles 


let mnist;      
// all data is loaded into this 
// mnist.train_images
// mnist.train_labels
// mnist.test_images
// mnist.test_labels


let nn;

let trainrun = 1;
let train_index = 0;

let testrun = 1;
let test_index = 0;
let total_tests = 0;
let total_correct = 0;

// images in LHS:
let doodle, demo;
let doodle_exists = false;
let demo_exists = false;

let mousedrag = false;      // are we in the middle of a mouse drag drawing?  


// save inputs to global var to inspect
// type these names in console 
var train_inputs, test_inputs, demo_inputs, doodle_inputs;


// Matrix.randomize() is changed to point to this. Must be defined by user of Matrix. 

function randomWeight()
{
    return ( AB.randomFloatAtoB ( -0.5, 0.5 ) );
            // Coding Train default is -1 to 1
}    


// make run header bigger
AB.headerCSS ( { "max-height": "95vh" } );




//--- start of AB.msgs structure: ---------------------------------------------------------
// We output a serious of AB.msgs to put data at various places in the run header 
var thehtml;

  // 1 Doodle header 
  thehtml = "<hr> <h1> 1. Doodle </h1> Top row: Doodle (left) and shrunk (right). <br> " +
        " Draw your doodle in top LHS. <button onclick='wipeDoodle();' class='normbutton' >Clear doodle</button> <br> ";
   AB.msg ( thehtml, 1 );

  // 2 Doodle variable data (guess)
  
  // 3 Training header
  thehtml = "<hr> <h1> 2. Training </h1> Middle row: Training image magnified (left) and original (right). <br>  " +
        " <button onclick='do_training = false;' class='normbutton' >Stop training</button> <br> ";
  AB.msg ( thehtml, 3 );
     
  // 4 variable training data 
  
  // 5 Testing header
  thehtml = "<h3> Hidden tests </h3> " ;
  AB.msg ( thehtml, 5 );
           
  // 6 variable testing data 
  
  // 7 Demo header 
  thehtml = "<hr> <h1> 3. Demo </h1> Bottom row: Test image magnified (left) and  original (right). <br>" +
        " The network is <i>not</i> trained on any of these images. <br> " +
        " <button onclick='makeDemo();' class='normbutton' >Demo test image</button> <br> ";
   AB.msg ( thehtml, 7 );
   
  // 8 Demo variable data (random demo ID)
  // 9 Demo variable data (changing guess)
  
const greenspan = "<span style='font-weight:bold; font-size:x-large; color:darkgreen'> "  ;

//--- end of AB.msgs structure: ---------------------------------------------------------




function setup() 
{
  createCanvas ( canvaswidth, canvasheight );

  doodle = createGraphics ( ZOOMPIXELS, ZOOMPIXELS );       // doodle on larger canvas 
  doodle.pixelDensity(1);
  
// JS load other JS 
// maybe have a loading screen while loading the JS and the data set 

      AB.loadingScreen();
 
 $.getScript ( "/uploads/codingtrain/matrix.js", function()
 {
   $.getScript ( "/uploads/codingtrain/nn.js", function()
   {
        $.getScript ( "/uploads/codingtrain/mnist.js", function()
        {
            console.log ("All JS loaded");
            nn = new NeuralNetwork(  noinput, nohidden, nooutput );
            nn.setLearningRate ( learningrate );
            loadData();
        });
   });
 });
}



// load data set from local file (on this server)

function loadData()    
{
  loadMNIST ( function(data)    
  {
    mnist = data;
    console.log ("All data loaded into mnist object:")
    console.log(mnist);
    AB.removeLoading();     // if no loading screen exists, this does nothing 
  });
}



function getImage ( img )      // make a P5 image object from a raw data array   
{
    let theimage  = createImage (PIXELS, PIXELS);    // make blank image, then populate it 
    theimage.loadPixels();        
    
    for (let i = 0; i < PIXELSSQUARED ; i++) 
    {
        let bright = img[i];
        let index = i * 4;
        theimage.pixels[index + 0] = bright;
        theimage.pixels[index + 1] = bright;
        theimage.pixels[index + 2] = bright;
        theimage.pixels[index + 3] = 255;
    }
    
    theimage.updatePixels();
    return theimage;
}


function getInputs ( img )      // convert img array into normalised input array 
{
    let inputs = [];
    for (let i = 0; i < PIXELSSQUARED ; i++)          
    {
        let bright = img[i];
        inputs[i] = bright / 255;       // normalise to 0 to 1
    } 
    return ( inputs );
}

 

function trainit (show)        // train the network with a single exemplar, from global var "train_index", show visual on or off 
{
  let img   = mnist.train_images[train_index];
  let label = mnist.train_labels[train_index];
  
  // optional - show visual of the image 
  if (show)                
  {
    var theimage = getImage ( img );    // get image from data array 
    image ( theimage,   0,                ZOOMPIXELS+50,    ZOOMPIXELS,     ZOOMPIXELS  );      // magnified 
    image ( theimage,   ZOOMPIXELS+50,    ZOOMPIXELS+50,    PIXELS,         PIXELS      );      // original
  }

  // set up the inputs
  let inputs = getInputs ( img );       // get inputs from data array 

  // set up the outputs
  let targets = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0];
  targets[label] = 1;       // change one output location to 1, the rest stay at 0 

  // console.log(train_index);
  // console.log(inputs);
  // console.log(targets);

  train_inputs = inputs;        // can inspect in console 
  nn.train ( inputs, targets );

  thehtml = " trainrun: " + trainrun + "<br> no: " + train_index ;
  AB.msg ( thehtml, 4 );

  train_index++;
  if ( train_index == NOTRAIN ) 
  {
    train_index = 0;
    console.log( "finished trainrun: " + trainrun );
    trainrun++;
  }
}


function testit()    // test the network with a single exemplar, from global var "test_index"
{ 
  let img   = mnist.test_images[test_index];
  let label = mnist.test_labels[test_index];

  // set up the inputs
  let inputs = getInputs ( img ); 
  
  test_inputs = inputs;        // can inspect in console 
  let prediction    = nn.predict(inputs);       // array of outputs 
  let guess         = findMax(prediction);      // the top output 

  total_tests++;
  if (guess == label)  total_correct++;

  let percent = (total_correct / total_tests) * 100 ;
  
  thehtml =  " testrun: " + testrun + "<br> no: " + total_tests + " <br> " +
        " correct: " + total_correct + "<br>" +
        "  score: " + greenspan + percent.toFixed(2) + "</span>";
  AB.msg ( thehtml, 6 );

  test_index++;
  if ( test_index == NOTEST ) 
  {
    console.log( "finished testrun: " + testrun + " score: " + percent.toFixed(2) );
    testrun++;
    test_index = 0;
    total_tests = 0;
    total_correct = 0;
  }
}




//--- find no.1 (and maybe no.2) output nodes ---------------------------------------
// (restriction) assumes array values start at 0 (which is true for output nodes) 


function find12 (a)         // return array showing indexes of no.1 and no.2 values in array 
{
  let no1 = 0;
  let no2 = 0;
  let no1value = 0;     
  let no2value = 0;
  
  for (let i = 0; i < a.length; i++) 
  {
    if (a[i] > no1value)   // new no1
    {
      // old no1 becomes no2
      no2 = no1;
      no2value = no1value;
      // now put in the new no1
      no1 = i;
      no1value = a[i];
    }
    else if (a[i] > no2value)  // new no2 
    {
      no2 = i;
      no2value = a[i];
    }
  }
  
  var b = [ no1, no2 ];
  return b;
}



// just get the maximum - separate function for speed - done many times 
// find our guess - the max of the output nodes array

function findMax (a)        
{
  let no1 = 0;
  let no1value = 0;     
  
  for (let i = 0; i < a.length; i++) 
  {
    if (a[i] > no1value) 
    {
      no1 = i;
      no1value = a[i];
    }
  }
  
  return no1;
}




// --- the draw function -------------------------------------------------------------
// every step:
 
function draw() 
{
  // check if libraries and data loaded yet:
  if ( typeof mnist == 'undefined' ) return;


// how can we get white doodle on black background on yellow canvas?
//        background('#ffffcc');    doodle.background('black');

      background ('black');
    
if ( do_training )    
{
  // do some training per step 
    for (let i = 0; i < TRAINPERSTEP; i++) 
    {
      if (i == 0)    trainit(true);    // show only one per step - still flashes by  
      else           trainit(false);
    }
    
  // do some testing per step 
    for (let i = 0; i < TESTPERSTEP; i++) 
      testit();
}

  // keep drawing demo and doodle images 
  // and keep guessing - we will update our guess as time goes on 
  
  if ( demo_exists )
  {
    drawDemo();
    guessDemo();
  }
  if ( doodle_exists ) 
  {
    drawDoodle();
    guessDoodle();
  }


// detect doodle drawing 
// (restriction) the following assumes doodle starts at 0,0 

  if ( mouseIsPressed )         // gets called when we click buttons, as well as if in doodle corner  
  {
     // console.log ( mouseX + " " + mouseY + " " + pmouseX + " " + pmouseY );
     var MAX = ZOOMPIXELS + 20;     // can draw up to this pixels in corner 
     if ( (mouseX < MAX) && (mouseY < MAX) && (pmouseX < MAX) && (pmouseY < MAX) )
     {
        mousedrag = true;       // start a mouse drag 
        doodle_exists = true;
        doodle.stroke('white');
        doodle.strokeWeight( DOODLE_THICK );
        doodle.line(mouseX, mouseY, pmouseX, pmouseY);      
     }
  }
  else 
  {
      // are we exiting a drawing
      if ( mousedrag )
      {
            mousedrag = false;
            // console.log ("Exiting draw. Now blurring.");
            doodle.filter (BLUR, DOODLE_BLUR);    // just blur once 
            //   console.log (doodle);
      }
  }
}




//--- demo -------------------------------------------------------------
// demo some test image and predict it
// get it from test set so have not used it in training


function makeDemo()
{
    demo_exists = true;
    var  i = AB.randomIntAtoB ( 0, NOTEST - 1 );  
    
    demo        = mnist.test_images[i];     
    var label   = mnist.test_labels[i];
    
   thehtml =  "Test image no: " + i + "<br>" + 
            "Classification: " + label + "<br>" ;
   AB.msg ( thehtml, 8 );
   
   // type "demo" in console to see raw data 
}


function drawDemo()
{
    var theimage = getImage ( demo );
     //  console.log (theimage);
     
    image ( theimage,   0,                canvasheight - ZOOMPIXELS,    ZOOMPIXELS,     ZOOMPIXELS  );      // magnified 
    image ( theimage,   ZOOMPIXELS+50,    canvasheight - ZOOMPIXELS,    PIXELS,         PIXELS      );      // original
}


function guessDemo()
{
   let inputs = getInputs ( demo ); 
   
  demo_inputs = inputs;  // can inspect in console 
  
  let prediction    = nn.predict(inputs);       // array of outputs 
  let guess         = findMax(prediction);      // the top output 

   thehtml =   " We classify it as: " + greenspan + guess + "</span>" ;
   AB.msg ( thehtml, 9 );
}




//--- doodle -------------------------------------------------------------

function drawDoodle()
{
    // doodle is createGraphics not createImage
    let theimage = doodle.get();
    // console.log (theimage);
    
    image ( theimage,   0,                0,    ZOOMPIXELS,     ZOOMPIXELS  );      // original 
    image ( theimage,   ZOOMPIXELS+50,    0,    PIXELS,         PIXELS      );      // shrunk
}
      
      
function guessDoodle() 
{
   // doodle is createGraphics not createImage
   let img = doodle.get();
  
  img.resize ( PIXELS, PIXELS );     
  img.loadPixels();

  // set up inputs   
  let inputs = [];
  for (let i = 0; i < PIXELSSQUARED ; i++) 
  {
     inputs[i] = img.pixels[i * 4] / 255;
  }
  
  doodle_inputs = inputs;     // can inspect in console 

  // feed forward to make prediction 
  let prediction    = nn.predict(inputs);       // array of outputs 
  let b             = find12(prediction);       // get no.1 and no.2 guesses  

  thehtml =   " We classify it as: " + greenspan + b[0] + "</span> <br>" +
            " No.2 guess is: " + greenspan + b[1] + "</span>";
  AB.msg ( thehtml, 2 );
}


function wipeDoodle()    
{
    doodle_exists = false;
    doodle.background('black');
}





// --- debugging --------------------------------------------------
// in console
showInputs(demo_inputs);
showInputs(doodle_inputs);


function showInputs ( inputs )
// display inputs row by row, corresponding to square of pixels 
{
    var str = "";
    for (let i = 0; i < inputs.length; i++) 
    {
      if ( i % PIXELS == 0 )    str = str + "\n";                                   // new line for each row of pixels 
      var value = inputs[i];
      str = str + " " + value.toFixed(2) ; 
    }
    console.log (str);
}

window.onload = function () {	
	// create a new game object which is an instance of Phaser.Game
	var game = new Phaser.Game(1280, 720, Phaser.CANVAS);
	
	// add all States to the game object (this program has only the Main State)
	game.state.add('MainState', App.MainState);
	
	// start the Main State
	game.state.start('MainState');
};

/***********************************************************************************
/* The Application Namespace
/***********************************************************************************/

var App = App || {};

// ---------------------------------------------------------------------------------
// Global constants and variables
// ---------------------------------------------------------------------------------

// the names of all datasets
App.DATASETS = ['car', 'fish', 'snowman'];

// ---------------------------------------------------------------------------------
// The Main State constructor
// ---------------------------------------------------------------------------------

App.MainState = function(){
	// constants describing all modes of the main state
	this.MODE_INIT = 1;
	this.MODE_OPEN_FILE = 2;
	this.MODE_LOAD_FILE = 3;
	this.MODE_START_TRAIN = 4;
	this.MODE_DO_TRAIN = 5;
	this.MODE_START_PREDICT = 6;
	this.MODE_DO_PREDICT = 7;
	this.MODE_DRAW = 8;
	
	// set initial mode
	this.mode = this.MODE_INIT;
	
	// the counter of currently loaded datasets
	this.dataset = 0;
};

// ---------------------------------------------------------------------------------
// The Main State prototype
// ---------------------------------------------------------------------------------

App.MainState.prototype = {
	/**
	* Automatically called only once to load all assets.
	*/
	preload : function(){
		this.game.load.image('imgBack', '../assets/img_back_2.png');
		
		this.game.load.image('btnMoreGames', '../assets/btn_moregames.png');
		this.game.load.image('btnAuthor', '../assets/btn_author.png');
		
		this.load.bitmapFont('fntBlackChars', '../assets/fnt_black_chars.png', '../assets/fnt_black_chars.fnt');
	},
	
	/**
	* Automatically called immediately after all assets are loaded to create all objects.
	*/
	create : function(){
		// scale game to cover the entire screen
		this.scale.scaleMode = Phaser.ScaleManager.SHOW_ALL;
		this.scale.pageAlignVertically = true;
		this.scale.pageAlignHorizontally = true;
		
		// keep game running if it loses the focus
		this.game.stage.disableVisibilityChange = true;

		// create background
		this.game.add.sprite(0, 0, 'imgBack');
		
		// create a loader for loading datasets
		this.loader = new Phaser.Loader(this.game);

		// create user interface with buttons, bitmaps and texts
		this.ui = new UI(this);
		
		// create a convolution neural network
		this.cnn = new CNN(this);
	},
	
	/**
	* Automatically called on every tick representing the main loop.
	*/
	update : function(){
		switch(this.mode){
			// initialize the game
			case this.MODE_INIT:
				this.ui.disableButtons();
				
				this.mode = this.MODE_OPEN_FILE;
				break;
				
			// open dataset file and start loading it
			case this.MODE_OPEN_FILE:
				var fileName = App.DATASETS[this.dataset] + '.bin';
				
				this.loader.reset();
				this.loader.binary('input_file', '../data/'+fileName);
				this.loader.start();
				
				this.ui.showStatusBar("Loading " + fileName + " file.");

				this.mode = this.MODE_LOAD_FILE;
				break;
				
			// wait on dataset file to be loaded
			case this.MODE_LOAD_FILE:		
				if (this.loader.hasLoaded){
					// split the loaded dataset into training data and test data
					this.cnn.splitDataset(
						new Uint8Array(this.game.cache.getBinary('input_file')),
						this.dataset
					);
					
					// increase the number of loaded datasets
					this.dataset++;
					
					// if we have not loaded all datasets yet then go to load the next one
					if (this.dataset < App.DATASETS.length){
						this.mode = this.MODE_OPEN_FILE;
						
					} else {
						this.ui.showStatusBar("All datasets loaded.");
						this.mode = this.MODE_START_TRAIN;
					}
				}
				break;

			case this.MODE_START_TRAIN:
				this.mode = this.MODE_DO_TRAIN;				
				break;
				
			case this.MODE_DO_TRAIN:
				this.mode = this.MODE_START_PREDICT;
				break;
			
			case this.MODE_START_PREDICT:
				this.mode = this.MODE_DO_PREDICT;
				break;

			case this.MODE_DO_PREDICT:
				this.mode = this.MODE_DRAW;
				break;
				
			case this.MODE_DRAW:
				break;
				
		}
	}
};

//The CNN Classifier

var CNN = function(main){
	// reference to the Main State
	this.main = main;
	
	this.NUM_CLASSES = App.DATASETS.length; // number of classes which can be recognized by CNN model
	
	this.IMAGE_SIZE = 784; // size of an image in a dataset
	
	this.NUM_TRAIN_IMAGES = 400; // number of training images in a dataset 
	this.NUM_TEST_IMAGES = 100; // number of test images in a dataset
	
	// total number of training images in all classes
	const TOTAL_TRAIN_IMAGES = this.NUM_CLASSES * this.NUM_TRAIN_IMAGES;
	
	// total number of test images in all classes
	const TOTAL_TEST_IMAGES = this.NUM_CLASSES * this.NUM_TEST_IMAGES;
	
	// create Training Data arrays for storing training images and their corresponding classes
	this.aTrainImages = new Float32Array(TOTAL_TRAIN_IMAGES * this.IMAGE_SIZE);
	this.aTrainClasses = new Uint8Array(TOTAL_TRAIN_IMAGES);
	
	// shuffle Training Data by creating an array of shuffled Train indices 
	this.aTrainIndices = tf.util.createShuffledIndices(TOTAL_TRAIN_IMAGES);
	
	// the reference to the current element in the aTrainIndices[] array
	this.trainElement = -1;
					
	// create arrays of Test Data for storing test images and their corresponding classes
	this.aTestImages = new Float32Array(TOTAL_TEST_IMAGES * this.IMAGE_SIZE);
	this.aTestClasses = new Uint8Array(TOTAL_TEST_IMAGES);
	
	// shuffle Test Data by creating an array of shuffled Test indices 
	this.aTestIndices = tf.util.createShuffledIndices(TOTAL_TEST_IMAGES);
	
	// the reference to the current element in the aTestIndices[] array
	this.testElement = -1;
};

// ---------------------------------------------------------------------------------
// CNN Prototype
// ---------------------------------------------------------------------------------

/**
* Splits the entire dataset into training data and test data.
*
* @param {Uint8Array} imagesBuffer - the array with binary data of all images in the dataset
* @param {integer} dataset - the ordinal number of the dataset
*/
CNN.prototype.splitDataset = function(imagesBuffer, dataset){
	// slice dataset to get training images and normalize them
	var trainBuffer = new Float32Array(imagesBuffer.slice(0, this.IMAGE_SIZE * this.NUM_TRAIN_IMAGES));
	trainBuffer = trainBuffer.map(function (cv){return cv/255.0});
	
	// add training images and their corresponding classes into Training Data arrays
	var start = dataset * this.NUM_TRAIN_IMAGES;
	this.aTrainImages.set(trainBuffer, start * this.IMAGE_SIZE);
	this.aTrainClasses.fill(dataset, start, start + this.NUM_TRAIN_IMAGES);
	
	// slice dataset to get test images and normalize them
	var testBuffer = new Float32Array(imagesBuffer.slice(this.IMAGE_SIZE * this.NUM_TRAIN_IMAGES));
	testBuffer = testBuffer.map(function (cv){return cv/255.0});
	
	// add test images and their corresponding classes into Test Data arrays
	start = dataset * this.NUM_TEST_IMAGES;
	this.aTestImages.set(testBuffer, start * this.IMAGE_SIZE);
	this.aTestClasses.fill(dataset, start, start + this.NUM_TEST_IMAGES);
};


//Training the CNN Classifier

var CNN = function(main){
	// reference to the Main State
	this.main = main;
	
	this.NUM_CLASSES = App.DATASETS.length; // number of classes which can be recognized by CNN model
	
	this.IMAGE_SIZE = 784; // size of an image in a dataset
	
	this.NUM_TRAIN_IMAGES = 400; // number of training images in a dataset 
	this.NUM_TEST_IMAGES = 100; // number of test images in a dataset
	
	this.TRAIN_ITERATIONS = 50; // total number of training iterations
	this.TRAIN_BATCH_SIZE = 100; // number of training images used to train model during one iteration

	this.TEST_FREQUENCY = 5; // frequency of testing model accuracy (one test on every 5 training iterations)
	this.TEST_BATCH_SIZE = 50; // number of test images used to test model accuracy
	
	this.trainIteration = 0; // current number of executed training iterations
	
	this.aLoss = []; // array to store model's loss values during training
	this.aAccu = []; // array to store model's accuracy values during training
	
	// total number of training images in all classes
	const TOTAL_TRAIN_IMAGES = this.NUM_CLASSES * this.NUM_TRAIN_IMAGES;
	
	// total number of test images in all classes
	const TOTAL_TEST_IMAGES = this.NUM_CLASSES * this.NUM_TEST_IMAGES;
	
	// create Training Data arrays for storing training images and their corresponding classes
	this.aTrainImages = new Float32Array(TOTAL_TRAIN_IMAGES * this.IMAGE_SIZE);
	this.aTrainClasses = new Uint8Array(TOTAL_TRAIN_IMAGES);
	
	// shuffle Training Data by creating an array of shuffled Train indices 
	this.aTrainIndices = tf.util.createShuffledIndices(TOTAL_TRAIN_IMAGES);
	
	// the reference to the current element in the aTrainIndices[] array
	this.trainElement = -1;
					
	// create arrays of Test Data for storing test images and their corresponding classes
	this.aTestImages = new Float32Array(TOTAL_TEST_IMAGES * this.IMAGE_SIZE);
	this.aTestClasses = new Uint8Array(TOTAL_TEST_IMAGES);
	
	// shuffle Test Data by creating an array of shuffled Test indices 
	this.aTestIndices = tf.util.createShuffledIndices(TOTAL_TEST_IMAGES);
	
	// the reference to the current element in the aTestIndices[] array
	this.testElement = -1;

	// create a CNN model using a Sequential model type in which
	// tensors are consecutively passed from one layer to the next 
	this.model = tf.sequential();

	// add a convolutional layer
	this.model.add(tf.layers.conv2d({
		inputShape: [28, 28, 1],
		kernelSize: 5,
		filters: 8,
		strides: 1,
		activation: 'relu',
		kernelInitializer: 'varianceScaling'
	}));
	
	// add a max pooling layer
	this.model.add(tf.layers.maxPooling2d({
		poolSize: [2, 2], 
		strides: [2, 2]
	}));
	
	// add a second convolutional layer
	this.model.add(tf.layers.conv2d({
		kernelSize: 5,
		filters: 16,
		strides: 1,
		activation: 'relu',
		kernelInitializer: 'varianceScaling'
	}));
	
	// add a second max pooling layer
	this.model.add(tf.layers.maxPooling2d({
		poolSize: [2, 2], 
		strides: [2, 2]
	}));
	
	// add a flatten layer to flatten the output of the previous layer to a vector
	this.model.add(tf.layers.flatten());
	
	// add a dense (fully connected) layer to perform the final classification 
	this.model.add(tf.layers.dense({
		units: this.NUM_CLASSES, 
		kernelInitializer: 'varianceScaling', 
		activation: 'softmax'
	}));
	
	// compile the model
	this.model.compile({
		optimizer: tf.train.sgd(0.15), // optimizer with learning rate
		loss: 'categoricalCrossentropy', // loss function
		metrics: ['accuracy'], // evaluation metric
	});
};

// ---------------------------------------------------------------------------------
// CNN Prototype
// ---------------------------------------------------------------------------------

/**
* Splits the entire dataset into training data and test data.
*
* @param {Uint8Array} imagesBuffer - the array with binary data of all images in the dataset
* @param {integer} dataset - the ordinal number of the dataset
*/
CNN.prototype.splitDataset = function(imagesBuffer, dataset){
	// slice dataset to get training images and normalize them
	var trainBuffer = new Float32Array(imagesBuffer.slice(0, this.IMAGE_SIZE * this.NUM_TRAIN_IMAGES));
	trainBuffer = trainBuffer.map(function (cv){return cv/255.0});
	
	// add training images and their corresponding classes into Training Data arrays
	var start = dataset * this.NUM_TRAIN_IMAGES;
	this.aTrainImages.set(trainBuffer, start * this.IMAGE_SIZE);
	this.aTrainClasses.fill(dataset, start, start + this.NUM_TRAIN_IMAGES);
	
	// slice dataset to get test images and normalize them
	var testBuffer = new Float32Array(imagesBuffer.slice(this.IMAGE_SIZE * this.NUM_TRAIN_IMAGES));
	testBuffer = testBuffer.map(function (cv){return cv/255.0});
	
	// add test images and their corresponding classes into Test Data arrays
	start = dataset * this.NUM_TEST_IMAGES;
	this.aTestImages.set(testBuffer, start * this.IMAGE_SIZE);
	this.aTestClasses.fill(dataset, start, start + this.NUM_TEST_IMAGES);
};

/**
* Trains the model
*/
CNN.prototype.train = async function(){
	// reset the training flag to know the training is currently in progress
	this.isTrainCompleted = false;
						
	for (let item = 0; item < this.TRAIN_ITERATIONS; item++){
		// increase the number of training iterations
		this.trainIteration++;
		this.main.ui.showStatusBar("Training the CNN - iteration " + this.trainIteration + ".");
		
		// fetch the next Training Batch
		let trainBatch = this.nextTrainBatch(this.TRAIN_BATCH_SIZE);
		
		// create new Test Batch and Validation Set
		let testBatch;
		let validationSet;
				
		if (item % this.TEST_FREQUENCY === 0){ // every few training passes...	
			// fetch the next Test Batch
			testBatch = this.nextTestBatch(this.TEST_BATCH_SIZE);
			
			// build Validation Set by using images and corresponding labels from Test Batch
			validationSet = [testBatch.images, testBatch.labels];
		}
		
		// train the model
		const training = await this.model.fit(
			trainBatch.images,
			trainBatch.labels,
			{batchSize: this.TRAIN_BATCH_SIZE, validationData: validationSet, epochs: 1}
		);

		// get the model loss from the last training iteration and plot the Loss Chart
		var maxLossLength = this.main.ui.bmpLossChart.width;
		if (this.aLoss.length > maxLossLength) this.aLoss.shift();
		this.aLoss.push(1 - Math.min(1, training.history.loss[0]));
		this.main.ui.plotChart(this.main.ui.bmpLossChart, this.aLoss, 1);
		
		if (testBatch != null) {
			// get the model accuracy from the last training iteration and plot the Accuracy Chart
			var maxAccuLength = this.main.ui.bmpAccuChart.width;
			if (this.aAccu.length * this.TEST_FREQUENCY > maxAccuLength) this.aAccu.shift();
			this.aAccu.push(1 - Math.min(1, training.history.acc[0]));
			this.main.ui.plotChart(this.main.ui.bmpAccuChart, this.aAccu, this.TEST_FREQUENCY);
			
			// dispose Test Batch from memory
			testBatch.images.dispose();
			testBatch.labels.dispose();
		}
		
		// dispose Training Batch from memory
		trainBatch.images.dispose();
		trainBatch.labels.dispose();

		// mitigate blocking the UI thread and freezing the tab during training
		await tf.nextFrame();
	}
	
	// set the training flag to know the training is completed
	this.isTrainCompleted = true;
};

/**
* Returns a batch of images and their corresponding classes from the Training Data
*
* @param {integer} batchSize - how many images are included in training batch
*/
CNN.prototype.nextTrainBatch = function(batchSize){
	return this.fetchBatch(
		batchSize, this.aTrainImages, this.aTrainClasses, 
		() => {
			this.trainElement = (this.trainElement + 1) % this.aTrainIndices.length;
			return this.aTrainIndices[this.trainElement];
		}
	);
};

/**
* Returns a batch of images and their corresponding classes from the Test Data
*
* @param {integer} batchSize - how many images are included in test batch
*/
CNN.prototype.nextTestBatch = function(batchSize){
	return this.fetchBatch(
		batchSize, this.aTestImages, this.aTestClasses, 
		() => {
			this.testElement = (this.testElement + 1) % this.aTestIndices.length;
			return this.aTestIndices[this.testElement];
		}
	);
};

/**
* Fetches a batch of images and their corresponding classes
*
* @param {integer} batchSize - how many images are included in the batch
* @param {Float32Array} aImages - array of images
* @param {Uint8Array} aClasses - array of corresponding classes
* @param {integer} getIndex - a function which returns the index of an image that must be fetched
*/
CNN.prototype.fetchBatch = function(batchSize, aImages, aClasses, getIndex){
	// create batch arrays
	const batchImages = new Float32Array(batchSize * this.IMAGE_SIZE);
	const batchLabels = new Uint8Array(batchSize * this.NUM_CLASSES);

	for (let item = 0; item < batchSize; item++){
		// get the index of the image we want to fetch
		const idx = getIndex();
		
		// fetch the image
		const image = aImages.slice(idx * this.IMAGE_SIZE, (idx + 1) * this.IMAGE_SIZE);
		
		// add the image to the batch of images
		batchImages.set(image, i * this.IMAGE_SIZE);

		// get the class number of this image
		const class_num = aClasses[idx];
		
		// generate the label for this image by using "one hot encoding method":
		// define a vector where all elements are 0, beside one element 
		// which points to the correct class of this image 
		const label = new Uint8Array(this.NUM_CLASSES);
		label[class_num] = 1;
		
		// add the label to the batch of labels
		batchLabels.set(label, i * this.NUM_CLASSES);
	}

	// convert batch of images to a temporary tensor
	const images_temp = tf.tensor2d(batchImages, [batchSize, this.IMAGE_SIZE]);
	
	// reshape the temporary tensor to the size of the model input shape
	const images = images_temp.reshape([batchSize, 28, 28, 1]);
	
	// dispose the temporary tensor to free memory
	images_temp.dispose();
	
	// convert batch of labels to tensor
	const labels = tf.tensor2d(batchLabels, [batchSize, this.NUM_CLASSES]);

	return {images, labels};
};