Code viewer for World: A-Z Character recognition ...

// // Cloned by Vaibhav on 3 Dec 2022 from World "Character recognition neural network" by "Coding Train" project 
// // Please leave this clone trail here.
 

// // Port of Character recognition neural network from here:
// // https://github.com/CodingTrain/Toy-Neural-Network-JS/tree/master/examples/mnist
// // with many modifications 


var canvas = document.getElementById("defaultCanvas0");
var model;

var thehtml;
thehtml = "<hr> <h1> Predict </h1>" +
    " <button onclick='erase();' class='normbutton' >Erase</button> <br>" + "<br>" +
     " <button onclick='prediction(); ' class='normbutton' >Predict</button> <br>";
AB.msg ( thehtml, 1 );

  
  
function erase() {
    clear();
    background(0,0,0);

    
}  

  
function canvas_to_image(image) {
    let tensor = tf.browser.fromPixels(image).resizeNearestNeighbor([28, 28]).mean(2).expandDims(2).expandDims().toFloat();
    return tensor.div(255.0);
}


async function prediction() {
    
    
            var imageData = canvas.toDataURL();
            let tensor = canvas_to_image(canvas);
            console.log(tensor.data());
            let predictions = await model.predict(tensor).data();
            let results = Array.from(predictions);
            // console.log(results);
            
            var max = results[0];
            var maxIndex = 0;
         
            for (var i = 1; i < results.length; i++) {
                if (results[i] > max) {
                    maxIndex = i;
                    max = results[i];
                }
            }
            
            output = {0: 'A', 1: 'B', 2: 'C', 3: 'D', 4: 'E', 5: 'F', 6: 'G', 7: 'H', 8: 'I', 9: 'J', 10: 'K', 11: 'L', 12: 'M', 13: 'N', 14: 'O', 15: 'P', 16: 'Q', 17: 'R', 18: 'S', 19: 'T', 20: 'U', 21: 'V', 22: 'W', 23: 'X', 24: 'Y', 25: 'Z'};
    
            console.log(output[maxIndex]);
            
            var pred;
            pred = "<br><b style='font-size: 2rem'>" + "Output: " +  "</b>" + "<b style='font-size: 3rem; color:#2ecc71'>" + output[maxIndex] + "</b>";
            AB.msg ( pred, 2 );
                          
}


function setup() {
  createCanvas(300, 300);
  background(0,0,0);
  $.getScript ( "/uploads/daddyyankee/tf.min.js", async function()
        {
            model = await tf.loadLayersModel("/uploads/daddyyankee/model.json");
        });
  noStroke();
  
}

function draw() {
  stroke(255);
  if (mouseIsPressed === true) {
    strokeWeight(20);
    line(mouseX, mouseY, pmouseX, pmouseY);
  }
}










// // --- defined by MNIST - do not change these ---------------------------------------

// const PIXELS        = 28;                       // images in data set are tiny 
// const PIXELSSQUARED = PIXELS * PIXELS;

// // number of training and test exemplars in the data set:
// const NOTRAIN = 60000;
// const NOTEST  = 10000;



// //--- can modify all these --------------------------------------------------

// // no of nodes in network 
// const noinput  = PIXELSSQUARED;
// const nohidden = 64;
// const nooutput = 10;

// const learningrate = 0.1;   // default 0.1  

// // should we train every timestep or not 
// let do_training = true;

// // how many to train and test per timestep 
// const TRAINPERSTEP = 30;
// const TESTPERSTEP  = 5;

// // multiply it by this to magnify for display 
// const ZOOMFACTOR    = 7;                        
// const ZOOMPIXELS    = ZOOMFACTOR * PIXELS; 

// // 3 rows of
// // large image + 50 gap + small image    
// // 50 gap between rows 

// const canvaswidth = ( PIXELS + ZOOMPIXELS ) + 50;
// const canvasheight = ( ZOOMPIXELS * 3 ) + 100;


// const DOODLE_THICK = 18;    // thickness of doodle lines 
// const DOODLE_BLUR = 3;      // blur factor applied to doodles 


// let mnist;      
// // all data is loaded into this 
// // mnist.train_images
// // mnist.train_labels
// // mnist.test_images
// // mnist.test_labels


// let nn;

// let trainrun = 1;
// let train_index = 0;

// let testrun = 1;
// let test_index = 0;
// let total_tests = 0;
// let total_correct = 0;

// // images in LHS:
// let doodle, demo;
// let doodle_exists = false;
// let demo_exists = false;

// let mousedrag = false;      // are we in the middle of a mouse drag drawing?  


// // save inputs to global var to inspect
// // type these names in console 
// var train_inputs, test_inputs, demo_inputs, doodle_inputs;


// // Matrix.randomize() is changed to point to this. Must be defined by user of Matrix. 

// function randomWeight()
// {
//     return ( AB.randomFloatAtoB ( -0.5, 0.5 ) );
//             // Coding Train default is -1 to 1
// }    


// // make run header bigger
// AB.headerCSS ( { "max-height": "95vh" } );




// //--- start of AB.msgs structure: ---------------------------------------------------------
// // We output a serious of AB.msgs to put data at various places in the run header 
// var thehtml;

//   // 1 Doodle header 
//   thehtml = "<hr> <h1> 1. Doodle </h1> Top row: Doodle (left) and shrunk (right). <br> " +
//         " Draw your doodle in top LHS. <button onclick='wipeDoodle();' class='normbutton' >Clear doodle</button> <br> ";
//   AB.msg ( thehtml, 1 );

//   // 2 Doodle variable data (guess)
  
//   // 3 Training header
//   thehtml = "<hr> <h1> 2. Training </h1> Middle row: Training image magnified (left) and original (right). <br>  " +
//         " <button onclick='do_training = false;' class='normbutton' >Stop training</button> <br> ";
//   AB.msg ( thehtml, 3 );
     
//   // 4 variable training data 
  
//   // 5 Testing header
//   thehtml = "<h3> Hidden tests </h3> " ;
//   AB.msg ( thehtml, 5 );
           
//   // 6 variable testing data 
  
//   // 7 Demo header 
//   thehtml = "<hr> <h1> 3. Demo </h1> Bottom row: Test image magnified (left) and  original (right). <br>" +
//         " The network is <i>not</i> trained on any of these images. <br> " +
//         " <button onclick='makeDemo();' class='normbutton' >Demo test image</button> <br> ";
//   AB.msg ( thehtml, 7 );
   
//   // 8 Demo variable data (random demo ID)
//   // 9 Demo variable data (changing guess)
  
// const greenspan = "<span style='font-weight:bold; font-size:x-large; color:darkgreen'> "  ;

// //--- end of AB.msgs structure: ---------------------------------------------------------




// function setup() 
// {
//   createCanvas ( canvaswidth, canvasheight );

//   doodle = createGraphics ( ZOOMPIXELS, ZOOMPIXELS );       // doodle on larger canvas 
//   doodle.pixelDensity(1);
  
// // JS load other JS 
// // maybe have a loading screen while loading the JS and the data set 

//       AB.loadingScreen();
 
//  $.getScript ( "/uploads/codingtrain/matrix.js", function()
//  {
//   $.getScript ( "/uploads/codingtrain/nn.js", function()
//   {
//         $.getScript ( "/uploads/codingtrain/mnist.js", function()
//         {
//             console.log ("All JS loaded");
//             nn = new NeuralNetwork(  noinput, nohidden, nooutput );
//             nn.setLearningRate ( learningrate );
//             loadData();
//         });
//   });
//  });
// }



// // load data set from local file (on this server)

// function loadData()    
// {
//   loadMNIST ( function(data)    
//   {
//     mnist = data;
//     console.log ("All data loaded into mnist object:")
//     console.log(mnist);
//     AB.removeLoading();     // if no loading screen exists, this does nothing 
//   });
// }



// function getImage ( img )      // make a P5 image object from a raw data array   
// {
//     let theimage  = createImage (PIXELS, PIXELS);    // make blank image, then populate it 
//     theimage.loadPixels();        
    
//     for (let i = 0; i < PIXELSSQUARED ; i++) 
//     {
//         let bright = img[i];
//         let index = i * 4;
//         theimage.pixels[index + 0] = bright;
//         theimage.pixels[index + 1] = bright;
//         theimage.pixels[index + 2] = bright;
//         theimage.pixels[index + 3] = 255;
//     }
    
//     theimage.updatePixels();
//     return theimage;
// }


// function getInputs ( img )      // convert img array into normalised input array 
// {
//     let inputs = [];
//     for (let i = 0; i < PIXELSSQUARED ; i++)          
//     {
//         let bright = img[i];
//         inputs[i] = bright / 255;       // normalise to 0 to 1
//     } 
//     return ( inputs );
// }

 

// function trainit (show)        // train the network with a single exemplar, from global var "train_index", show visual on or off 
// {
//   let img   = mnist.train_images[train_index];
//   let label = mnist.train_labels[train_index];
  
//   // optional - show visual of the image 
//   if (show)                
//   {
//     var theimage = getImage ( img );    // get image from data array 
//     image ( theimage,   0,                ZOOMPIXELS+50,    ZOOMPIXELS,     ZOOMPIXELS  );      // magnified 
//     image ( theimage,   ZOOMPIXELS+50,    ZOOMPIXELS+50,    PIXELS,         PIXELS      );      // original
//   }

//   // set up the inputs
//   let inputs = getInputs ( img );       // get inputs from data array 

//   // set up the outputs
//   let targets = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0];
//   targets[label] = 1;       // change one output location to 1, the rest stay at 0 

//   // console.log(train_index);
//   // console.log(inputs);
//   // console.log(targets);

//   train_inputs = inputs;        // can inspect in console 
//   nn.train ( inputs, targets );

//   thehtml = " trainrun: " + trainrun + "<br> no: " + train_index ;
//   AB.msg ( thehtml, 4 );

//   train_index++;
//   if ( train_index == NOTRAIN ) 
//   {
//     train_index = 0;
//     console.log( "finished trainrun: " + trainrun );
//     trainrun++;
//   }
// }


// function testit()    // test the network with a single exemplar, from global var "test_index"
// { 
//   let img   = mnist.test_images[test_index];
//   let label = mnist.test_labels[test_index];

//   // set up the inputs
//   let inputs = getInputs ( img ); 
  
//   test_inputs = inputs;        // can inspect in console 
//   let prediction    = nn.predict(inputs);       // array of outputs 
//   let guess         = findMax(prediction);      // the top output 

//   total_tests++;
//   if (guess == label)  total_correct++;

//   let percent = (total_correct / total_tests) * 100 ;
  
//   thehtml =  " testrun: " + testrun + "<br> no: " + total_tests + " <br> " +
//         " correct: " + total_correct + "<br>" +
//         "  score: " + greenspan + percent.toFixed(2) + "</span>";
//   AB.msg ( thehtml, 6 );

//   test_index++;
//   if ( test_index == NOTEST ) 
//   {
//     console.log( "finished testrun: " + testrun + " score: " + percent.toFixed(2) );
//     testrun++;
//     test_index = 0;
//     total_tests = 0;
//     total_correct = 0;
//   }
// }




// //--- find no.1 (and maybe no.2) output nodes ---------------------------------------
// // (restriction) assumes array values start at 0 (which is true for output nodes) 


// function find12 (a)         // return array showing indexes of no.1 and no.2 values in array 
// {
//   let no1 = 0;
//   let no2 = 0;
//   let no1value = 0;     
//   let no2value = 0;
  
//   for (let i = 0; i < a.length; i++) 
//   {
//     if (a[i] > no1value)   // new no1
//     {
//       // old no1 becomes no2
//       no2 = no1;
//       no2value = no1value;
//       // now put in the new no1
//       no1 = i;
//       no1value = a[i];
//     }
//     else if (a[i] > no2value)  // new no2 
//     {
//       no2 = i;
//       no2value = a[i];
//     }
//   }
  
//   var b = [ no1, no2 ];
//   return b;
// }



// // just get the maximum - separate function for speed - done many times 
// // find our guess - the max of the output nodes array

// function findMax (a)        
// {
//   let no1 = 0;
//   let no1value = 0;     
  
//   for (let i = 0; i < a.length; i++) 
//   {
//     if (a[i] > no1value) 
//     {
//       no1 = i;
//       no1value = a[i];
//     }
//   }
  
//   return no1;
// }




// // --- the draw function -------------------------------------------------------------
// // every step:
 
// function draw() 
// {
//   // check if libraries and data loaded yet:
//   if ( typeof mnist == 'undefined' ) return;


// // how can we get white doodle on black background on yellow canvas?
// //        background('#ffffcc');    doodle.background('black');

//       background ('black');
    
// if ( do_training )    
// {
//   // do some training per step 
//     for (let i = 0; i < TRAINPERSTEP; i++) 
//     {
//       if (i == 0)    trainit(true);    // show only one per step - still flashes by  
//       else           trainit(false);
//     }
    
//   // do some testing per step 
//     for (let i = 0; i < TESTPERSTEP; i++) 
//       testit();
// }

//   // keep drawing demo and doodle images 
//   // and keep guessing - we will update our guess as time goes on 
  
//   if ( demo_exists )
//   {
//     drawDemo();
//     guessDemo();
//   }
//   if ( doodle_exists ) 
//   {
//     drawDoodle();
//     guessDoodle();
//   }


// // detect doodle drawing 
// // (restriction) the following assumes doodle starts at 0,0 

//   if ( mouseIsPressed )         // gets called when we click buttons, as well as if in doodle corner  
//   {
//      // console.log ( mouseX + " " + mouseY + " " + pmouseX + " " + pmouseY );
//      var MAX = ZOOMPIXELS + 20;     // can draw up to this pixels in corner 
//      if ( (mouseX < MAX) && (mouseY < MAX) && (pmouseX < MAX) && (pmouseY < MAX) )
//      {
//         mousedrag = true;       // start a mouse drag 
//         doodle_exists = true;
//         doodle.stroke('white');
//         doodle.strokeWeight( DOODLE_THICK );
//         doodle.line(mouseX, mouseY, pmouseX, pmouseY);      
//      }
//   }
//   else 
//   {
//       // are we exiting a drawing
//       if ( mousedrag )
//       {
//             mousedrag = false;
//             // console.log ("Exiting draw. Now blurring.");
//             doodle.filter (BLUR, DOODLE_BLUR);    // just blur once 
//             //   console.log (doodle);
//       }
//   }
// }




// //--- demo -------------------------------------------------------------
// // demo some test image and predict it
// // get it from test set so have not used it in training


// function makeDemo()
// {
//     demo_exists = true;
//     var  i = AB.randomIntAtoB ( 0, NOTEST - 1 );  
    
//     demo        = mnist.test_images[i];     
//     var label   = mnist.test_labels[i];
    
//   thehtml =  "Test image no: " + i + "<br>" + 
//             "Classification: " + label + "<br>" ;
//   AB.msg ( thehtml, 8 );
   
//   // type "demo" in console to see raw data 
// }


// function drawDemo()
// {
//     var theimage = getImage ( demo );
//      //  console.log (theimage);
     
//     image ( theimage,   0,                canvasheight - ZOOMPIXELS,    ZOOMPIXELS,     ZOOMPIXELS  );      // magnified 
//     image ( theimage,   ZOOMPIXELS+50,    canvasheight - ZOOMPIXELS,    PIXELS,         PIXELS      );      // original
// }


// function guessDemo()
// {
//   let inputs = getInputs ( demo ); 
   
//   demo_inputs = inputs;  // can inspect in console 
  
//   let prediction    = nn.predict(inputs);       // array of outputs 
//   let guess         = findMax(prediction);      // the top output 

//   thehtml =   " We classify it as: " + greenspan + guess + "</span>" ;
//   AB.msg ( thehtml, 9 );
// }




// //--- doodle -------------------------------------------------------------

// function drawDoodle()
// {
//     // doodle is createGraphics not createImage
//     let theimage = doodle.get();
//     // console.log (theimage);
    
//     image ( theimage,   0,                0,    ZOOMPIXELS,     ZOOMPIXELS  );      // original 
//     image ( theimage,   ZOOMPIXELS+50,    0,    PIXELS,         PIXELS      );      // shrunk
// }
      
      
// function guessDoodle() 
// {
//   // doodle is createGraphics not createImage
//   let img = doodle.get();
  
//   img.resize ( PIXELS, PIXELS );     
//   img.loadPixels();

//   // set up inputs   
//   let inputs = [];
//   for (let i = 0; i < PIXELSSQUARED ; i++) 
//   {
//      inputs[i] = img.pixels[i * 4] / 255;
//   }
  
//   doodle_inputs = inputs;     // can inspect in console 

//   // feed forward to make prediction 
//   let prediction    = nn.predict(inputs);       // array of outputs 
//   let b             = find12(prediction);       // get no.1 and no.2 guesses  

//   thehtml =   " We classify it as: " + greenspan + b[0] + "</span> <br>" +
//             " No.2 guess is: " + greenspan + b[1] + "</span>";
//   AB.msg ( thehtml, 2 );
// }


// function wipeDoodle()    
// {
//     doodle_exists = false;
//     doodle.background('black');
// }




// // --- debugging --------------------------------------------------
// // in console
// // showInputs(demo_inputs);
// // showInputs(doodle_inputs);


// function showInputs ( inputs )
// // display inputs row by row, corresponding to square of pixels 
// {
//     var str = "";
//     for (let i = 0; i < inputs.length; i++) 
//     {
//       if ( i % PIXELS == 0 )    str = str + "\n";                                   // new line for each row of pixels 
//       var value = inputs[i];
//       str = str + " " + value.toFixed(2) ; 
//     }
//     console.log (str);
// }