// Port from
// https://github.com/nature-of-code/noc-examples-p5.js/tree/master/chp10_nn/NOC_10_01_Perceptron
// A list of points we will use to "train" the perceptron
let training = new Array(200);
const LearningConstant = 0.01; // easier to watch if it is low
// Coordinate space
let xmin = -1;
let ymin = -1;
let xmax = 1;
let ymax = 1;
// set fixed width run header
AB.headerWidth ( 400 );
// function to draw a line
// y = ax + b
// original: y = 0.3 * x + 0.4
const a = AB.randomFloatAtoB ( 0.1, 0.9 );
const b = AB.randomFloatAtoB ( 0.1, 0.9 );
function f(x)
{
return ( a * x + b );
}
// classification is are you above or below line
// perceptron should move towards the line
function getClassification ( x, y )
{
if (y < f(x)) return ( -1 );
else return ( 1 );
}
// Daniel Shiffman
// The Nature of Code
// http://natureofcode.com
// Simple Perceptron Example
// See: http://en.wikipedia.org/wiki/Perceptron
// Perceptron Class
// Perceptron is created with n weights and learning constant
class Perceptron
{
constructor(n, c)
{
// Array of weights for inputs
this.weights = new Array(n);
// Start with random weights
for (let i = 0; i < this.weights.length; i++) {
this.weights[i] = random(-1, 1);
}
this.c = c; // learning rate/constant
}
// Function to train the Perceptron
// Weights are adjusted based on "desired" answer
train(inputs, desired)
{
// Guess the result
let guess = this.feedforward(inputs);
// Compute the factor for changing the weight based on the error
// Error = desired output - guessed output
// Note this can only be 0, -2, or 2
// Multiply by learning constant
let error = desired - guess;
// Adjust weights based on weightChange * input
for (let i = 0; i < this.weights.length; i++)
{
this.weights[i] += this.c * error * inputs[i];
}
}
// Guess -1 or 1 based on input values
feedforward(inputs)
{
// Sum all values
let sum = 0;
for (let i = 0; i < this.weights.length; i++)
{
sum += inputs[i] * this.weights[i];
}
// Result is sign of the sum, -1 or 1
return this.activate(sum);
}
activate(sum)
{
if (sum > 0) return 1;
else return -1;
}
// Return weights
getWeights()
{
return this.weights;
}
}
// The Nature of Code
// Daniel Shiffman
// http://natureofcode.com
// Simple Perceptron Example
// See: http://en.wikipedia.org/wiki/Perceptron
// Code based on text "Artificial Intelligence", George Luger
// A Perceptron object
let ptron;
// We will train the perceptron with one "Point" object at a time
let count = 0;
function setup()
{
createCanvas(800, 800);
// The perceptron has 3 inputs
// x, y, and bias
ptron = new Perceptron ( 3, LearningConstant );
// Create a random set of training points and calculate the "known" answer
for (let i = 0; i < training.length; i++)
{
let x = random(xmin, xmax);
let y = random(ymin, ymax);
let answer = getClassification ( x, y );
training[i] =
{
input: [x, y, 1],
output: answer
};
}
}
var step = 1;
function draw()
{
AB.msg ( "Line: y = " + a.toFixed(2) + " x + " + b.toFixed(2) +
"<br> Step: " + step );
step++;
background('black');
// Draw the line
strokeWeight(3);
stroke('lightblue');
let x1 = map(xmin, xmin, xmax, 0, width);
let y1 = map(f(xmin), ymin, ymax, height, 0);
let x2 = map(xmax, xmin, xmax, 0, width);
let y2 = map(f(xmax), ymin, ymax, height, 0);
line(x1, y1, x2, y2);
// Draw the line based on the current weights
// Formula is weights[0]*x + weights[1]*y + weights[2] = 0
stroke('white');
let weights = ptron.getWeights();
x1 = xmin;
y1 = (-weights[2] - weights[0] * x1) / weights[1];
x2 = xmax;
y2 = (-weights[2] - weights[0] * x2) / weights[1];
x1 = map(x1, xmin, xmax, 0, width);
y1 = map(y1, ymin, ymax, height, 0);
x2 = map(x2, xmin, xmax, 0, width);
y2 = map(y2, ymin, ymax, height, 0);
line(x1, y1, x2, y2);
// Train the Perceptron with one "training" point at a time
AB.msg ( "<br> Training on single point: " + count, 2 );
ptron.train(training[count].input, training[count].output);
count = (count + 1) % training.length;
// Draw all the points
AB.msg ( "<br> Drawing points 0 to " + (count-1), 3 );
for (let i = 0; i < count; i++)
{
strokeWeight(1);
let guess = ptron.feedforward(training[i].input);
let x = map(training[i].input[0], xmin, xmax, 0, width);
let y = map(training[i].input[1], ymin, ymax, height, 0);
// original version: based on what the Perceptron would "guess" - shows how its guess changes over time
// if (guess > 0)
// this version: correct answer
if ( getClassification ( training[i].input[0], training[i].input[1] ) == 1 )
{
stroke('lightgreen');
fill('lightgreen');
}
else
{
stroke('lightpink');
fill('lightpink');
}
ellipse(x, y, 12, 12);
}
}