// ML5 image recognition using MobileNet
// uses AB framework
// enter URL of image at runtime
// no run, pause, step
AB.drawRunControls = false;
let classifier;
let img;
// asynchronous loads of resources, with callback functions when ready
var classifierLoaded = false;
var imgLoaded = false;
AB.world.newRun = function()
{
AB.runReady = false; // prevent screenshot while waiting on splash screen
ABWorld.init ( 'lightblue' );
AB.headerRHS();
// splash screen to enter URL
AB.newSplash();
AB.splashHtml ( " <h1> Try to recognise any image </h1> " +
" Enter URL of image: <input style='width:25vw;' maxlength='2000' id=url NAME=url VALUE='' > " +
" <button onclick='recognise();' class=ab-normbutton >Recognise</button> <p> " +
" (Image must be on Ancient Brain) <p> " +
" <div id=errordiv name=errordiv> </div> " );
// can do classifier load while we are waiting for user
classifier = ml5.imageClassifier ( 'MobileNet', function()
{
// console.log ( "loaded classifier");
classifierLoaded = true;
if ( classifierLoaded && imgLoaded ) init();
});
};
function recognise() // user has entered a URL
{
var url = jQuery("input#url").val();
url = url.trim();
if ( ! url.startsWith ( "https://ancientbrain.com/uploads/" ) )
{
$("#errordiv").html( "<font color=red> <B> Error: Image must be an upload on Ancient Brain </b></font> " );
return;
}
// else URL looks good
AB.removeSplash();
url = url.replace ( "https://ancientbrain.com/uploads/", "/uploads/" );
// console.log ( "fetching image: " + url );
loadImage ( url, function ( theimg )
{
// console.log ( "loaded image");
img = theimg;
imgLoaded = true;
if ( classifierLoaded && imgLoaded ) init();
});
}
function init() // all resources loaded
{
// center image in full window canvas, so screenshot looks good
// x + img.width + x = ABWorld.p5canvas.width
var x = (ABWorld.p5canvas.width - img.width ) /2;
var y = (ABWorld.p5canvas.height - img.height ) /2;
image (img, x, y);
AB.headerRHS();
// AB.msg ( "Running image recognition ... <br> ", 1 );
AB.runReady = true;
classifier.classify ( img, 5, function ( error, results ) // classify, with callback function
{
if (error)
{
AB.msg ( "<font color=red> <B> Error recognising image. See console for details. </b></font> <br> ", 2 );
console.log (error);
}
// results = an array ordered by confidence
var r = "<hr> <h3> Rank Confidence Identification </h3> ";
for ( var i = 0; i < results.length; i++ )
{
r = r + (i+1) + ". " + nf(results[i].confidence, 0, 2) + " " + results[i].label + " <br> ";
// https://p5js.org/reference/#/p5/nf
}
AB.msg ( r, 3 );
});
}