Code viewer for World: Character Recognition NN -...
// Cloned by Tony Forde on 26 Nov 2021 from World "Character recognition neural network" by "Coding Train" project 
// Please leave this clone trail here.

// Port of Character recognition neural network from here:
// https://github.com/CodingTrain/Toy-Neural-Network-JS/tree/master/examples/mnist
// with many modifications 


// --- defined by MNIST - do not change these ---------------------------------------

const PIXELS        = 28;                       // images in data set are tiny 
const PIXELSSQUARED = PIXELS * PIXELS;

// number of training and test exemplars in the data set:
const NOTRAIN = 60000;
const NOTEST  = 10000;


//--- can modify all these --------------------------------------------------

// No. of nodes in network 
const noinput  = PIXELSSQUARED;
const nohidden = 64;
const nooutput = 10;

// Learning rate:
const learningrate = 0.2;   // default 0.1  

// Weoght range:
const minWeight = -0.9;
const maxWeight = 0.9;

// Input differential:
let inputDiffRate = 0.1;
let inputDiffFactor = 1 + inputDiffRate;

console.log("inputDiffFactor = " + inputDiffFactor);


const ACTIVATION_FUNCTION = "Sigmoid";

// should we train every timestep or not 
let do_training = true;

// how many to train and test per timestep. Default 30, 5.
// If you set this to TRAINPERSTEP 0 then the training will not occur so the result will be 10% (1 in 10 random).
// If you set this to small number e.g. 1 it flies through too quickly. 
// But you can slow it down by increasing TESTPERSTEP to e.g. 200.
const TRAINPERSTEP = 30; 
const TESTPERSTEP  = 5;

// multiply it by this to magnify for display 
const ZOOMFACTOR    = 7;                        
const ZOOMPIXELS    = ZOOMFACTOR * PIXELS; 

// 3 rows of
// large image + 50 gap + small image    
// 50 gap between rows 

const canvaswidth = ( PIXELS + ZOOMPIXELS ) + 50;
const canvasheight = ( ZOOMPIXELS * 3 ) + 100;

const DOODLE_THICK = 20;  //18;    // thickness of doodle lines 
const DOODLE_BLUR = 3;      // blur factor applied to doodles: default 3

// For convolution and maxpooling
let dest;
let maxpooling;
// Where to process the pixels
let xstart = 0;
let ystart = 0;

// Convolution matrix
let kernel = [
   [-2, -1, 0],
   [-1, 1, 1],
   [0, 1, 2]
 ];

let mnist;      
// all data is loaded into this 
// mnist.train_images
// mnist.train_labels
// mnist.test_images
// mnist.test_labels

let nn;

let trainrun = 1;
let train_index = 0;

let testrun = 1;
let test_index = 0;
let total_tests = 0;
let total_correct = 0;

// images in LHS:
let doodle, demo;
let doodle_exists = false;
let demo_exists = false;

let mousedrag = false;      // are we in the middle of a mouse drag drawing?  

// save inputs to global var to inspect
// type these names in console 
var train_inputs, test_inputs, demo_inputs, doodle_inputs;

// Used for tracking count of correct / incorrect doodle guesses
let countCorrectDoodleGuess = 0;
let countIncorrectDoodleGuess = 0;
let countAllDoodleGuess = 0;
let rateDoodleSuccess = 0;

// Matrix.randomize() is changed to point to this. Must be defined by user of Matrix. 

function randomWeight()
{
    return ( AB.randomFloatAtoB ( minWeight, maxWeight ) );
            // Coding Train default is -1 to 1
}    


// make run header bigger
AB.headerCSS ( { "max-height": "95vh" } );




//--- start of AB.msgs structure: ---------------------------------------------------------
// We output a serious of AB.msgs to put data at various places in the run header 
var thehtml;


  // 1 Doodle header 
  thehtml = "<hr> <h1> 1. Doodle </h1> Top row: Doodle (left) and shrunk (right). <br> " +
        " Draw your doodle in top LHS. <br> " + 
        " <button onclick='wipeDoodle();' class='normbutton' >Clear doodle</button> " +
        " <button onclick='clearScore();' class='normbutton' >Clear score</button> " +
        " <button onclick='markCorrect();' class='normbutton' >Correct</button> " +
        " <button onclick='secondCorrect();' class='normbutton' >Nearly!</button> " +
        " <button onclick='markIncorrect();' class='normbutton' >Incorrect</button> <br> ";

   AB.msg ( thehtml, 1 );

  // 2 Doodle variable data (guess)
  
  // 3 Training header
  thehtml = "<hr> <h1> 2. Training </h1> Middle row: Training image magnified (left) and original (right). <br>  " +
        " <button onclick='do_training = false;' class='normbutton' >Stop training</button> <br> ";
  AB.msg ( thehtml, 3 );
     
  // 4 variable training data 
  
  // 5 Testing header
  thehtml = "<h3> Hidden tests </h3> " ;
  AB.msg ( thehtml, 5 );
           
  // 6 variable testing data 
  
  // 7 Demo header 
  thehtml = "<hr> <h1> 3. Demo </h1> Bottom row: Test image magnified (left) and  original (right). <br>" +
        " The network is <i>not</i> trained on any of these images. <br> " +
        " <button onclick='makeDemo();' class='normbutton' >Demo test image</button> <br> ";
   AB.msg ( thehtml, 7 );

  // 8 Demo variable data (random demo ID)
  // 9 Demo variable data (changing guess)
  
  // 10. Run settings 
 thehtml = "<hr> <h1> 4. Settings </h1> Activation function: "+ ACTIVATION_FUNCTION + " <br>  " +
 " No. Hidden nodes: " + nohidden + "        Learning rate: " + learningrate + "<br>  " + 
 " Min Weight: " + minWeight + "        Max Weight: " + maxWeight + "<br>  " + 
 " Input differential: " + inputDiffRate;
 
  AB.msg ( thehtml, 10 );    
  
const greenspan = "<span style='font-weight:bold; font-size:x-large; color:darkgreen'> "  ;

//--- end of AB.msgs structure: ---------------------------------------------------------

AB.runloggedin;                 // Boolean. Are we running logged in.  
AB.myuserid;                    // The userid of the run, if running logged in.  

function setup() 
{
  createCanvas ( canvaswidth, canvasheight );

  doodle = createGraphics ( ZOOMPIXELS, ZOOMPIXELS );       // doodle on larger canvas 
  doodle.pixelDensity(1);
  

// JS load other JS 
// maybe have a loading screen while loading the JS and the data set 

 AB.loadingScreen();
 
 $.getScript ( "/uploads/fordea23/matrix.js", function()
 {
   $.getScript ( "/uploads/fordea23/nn.js", function()
   {
        $.getScript ( "/uploads/fordea23/mnist.js", function()
        {
            console.log ("All JS loaded");
            nn = new NeuralNetwork(  noinput, nohidden, nooutput );
            nn.setLearningRate ( learningrate );
            loadData();
        });
   });
 });
}


// load data set from local file (on this server)

function loadData()    
{
  loadMNIST ( function(data)    
  {
    mnist = data;
    console.log ("All data loaded into mnist object:")
    console.log(mnist);
    AB.removeLoading();     // if no loading screen exists, this does nothing 
  });
}


function getImage ( img )      // make a P5 image object from a raw data array   
{
    let theimage  = createImage (PIXELS, PIXELS);    // make blank image, then populate it 
    theimage.loadPixels();        
    
    for (let i = 0; i < PIXELSSQUARED ; i++)  // Each image is made up of PIXELSSQUARED number of pixels
    {
        // Each pixel is an array of size 4 with values for R, G, B, A
        let bright = img[i];
        let index = i * 4;
        theimage.pixels[index + 0] = bright; // R - Red
        theimage.pixels[index + 1] = bright; // G - Green
        theimage.pixels[index + 2] = bright; // B - Blue
        theimage.pixels[index + 3] = 255;    // A - Alpha
    }
    
    theimage.updatePixels();
    return theimage;
}


function getInputs ( img )      // convert img array into normalised input array 
{
    let inputs = [];
    for (let i = 0; i < PIXELSSQUARED ; i++)          
    {
        let bright = img[i];
        inputs[i] = bright / 255;       // normalise to 0 to 1
    } 
    return ( inputs );
}

 

function trainit (show)        // train the network with a single exemplar, from global var "train_index", show visual on or off 
{
  let img   = mnist.train_images[train_index];
  let label = mnist.train_labels[train_index];
  
  // optional - show visual of the image 
  if (show)                
  {
    var theimage = getImage ( img );    // get image from data array 
    image ( theimage,   0,                ZOOMPIXELS+50,    ZOOMPIXELS,     ZOOMPIXELS  );      // magnified 
    image ( theimage,   ZOOMPIXELS+50,    ZOOMPIXELS+50,    PIXELS,         PIXELS      );      // original
    
    noFill();
    stroke (255);
    rect (0,                ZOOMPIXELS+50,    ZOOMPIXELS,     ZOOMPIXELS  );      //

  }

  // set up the inputs
  let inputs = getInputs ( img );       // get inputs from data array 

  // set up the outputs
  let targets = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0];
  targets[label] = 1;       // change one output location to 1, the rest stay at 0 

  // console.log(train_index);
  // console.log(inputs);
  // console.log(targets);

  train_inputs = inputs;        // can inspect in console 
  nn.train ( inputs, targets );

  thehtml = " trainrun: " + trainrun + "<br> no: " + train_index ;
  AB.msg ( thehtml, 4 );

  train_index++;
  if ( train_index == NOTRAIN ) 
  {
    train_index = 0;
    console.log( "finished trainrun: " + trainrun );
    trainrun++;
  }
}


function testit()    // test the network with a single exemplar, from global var "test_index"
{ 
  let img   = mnist.test_images[test_index];
  let label = mnist.test_labels[test_index];

  // set up the inputs
  let inputs = getInputs ( img ); 
  
  test_inputs = inputs;        // can inspect in console 
  let prediction    = nn.predict(inputs);       // array of outputs 
  let guess         = findMax(prediction);      // the top output 

  total_tests++;
  if (guess == label)  total_correct++;

  let percent = (total_correct / total_tests) * 100 ;
  
  thehtml =  " testrun: " + testrun + "<br> no: " + total_tests + " <br> " +
        " correct: " + total_correct + "<br>" +
        "  score: " + greenspan + percent.toFixed(2) + "</span>";
  AB.msg ( thehtml, 6 );

  test_index++;
  if ( test_index == NOTEST ) 
  {
    console.log( "finished testrun: " + testrun + " score: " + percent.toFixed(2) );
    testrun++;
    test_index = 0;
    total_tests = 0;
    total_correct = 0;
  }
}


//--- find no.1 (and maybe no.2) output nodes ---------------------------------------
// (restriction) assumes array values start at 0 (which is true for output nodes) 

function find12 (a)         // return array showing indexes of no.1 and no.2 values in array 
{
  let no1 = 0;
  let no2 = 0;
  let no1value = 0;     
  let no2value = 0;
  
  for (let i = 0; i < a.length; i++) 
  {
    if (a[i] > no1value)   // new no1
    {
      // old no1 becomes no2
      no2 = no1;
      no2value = no1value;
      // now put in the new no1
      no1 = i;
      no1value = a[i];
    }
    else if (a[i] > no2value)  // new no2 
    {
      no2 = i;
      no2value = a[i];
    }
  }
  
  var b = [ no1, no2 ];
  return b;
}


// just get the maximum - separate function for speed - done many times 
// find our guess - the max of the output nodes array

function findMax (a)        
{
  let no1 = 0;
  let no1value = 0;     
  
  for (let i = 0; i < a.length; i++) 
  {
    if (a[i] > no1value) 
    {
      no1 = i;
      no1value = a[i];
    }
  }
  
  return no1;
}



// --- the draw function -------------------------------------------------------------
// every step:
 
function draw() 
{
  // check if libraries and data loaded yet:
  if ( typeof mnist == 'undefined' ) return;


// how can we get white doodle on black background on yellow canvas?
//        background('#ffffcc');    doodle.background('black');

      background ('black');
    
if ( do_training )    
{
  // do some training per step 
    for (let i = 0; i < TRAINPERSTEP; i++) 
    {
      if (i == 0)    trainit(true);    // show only one per step - still flashes by  
      else           trainit(false);
    }
    
  // do some testing per step 
    for (let i = 0; i < TESTPERSTEP; i++) 
      testit();
}

  // keep drawing demo and doodle images 
  // and keep guessing - we will update our guess as time goes on 
  
  if ( demo_exists )
  {
    drawDemo();
    guessDemo();
  }
  if ( doodle_exists ) 
  {
    drawDoodle();
    guessDoodle();
  }


// detect doodle drawing 
// (restriction) the following assumes doodle starts at 0,0 

  if ( mouseIsPressed )         // gets called when we click buttons, as well as if in doodle corner  
  {
     // console.log ( mouseX + " " + mouseY + " " + pmouseX + " " + pmouseY );
     var MAX = ZOOMPIXELS + 20;     // can draw up to this pixels in corner 
     if ( (mouseX < MAX) && (mouseY < MAX) && (pmouseX < MAX) && (pmouseY < MAX) )
     {
        mousedrag = true;       // start a mouse drag 
        doodle_exists = true;
        doodle.stroke('white');
        doodle.strokeWeight( DOODLE_THICK );
        doodle.line(mouseX, mouseY, pmouseX, pmouseY);      
     }
  }
  else 
  {
      // are we exiting a drawing
      if ( mousedrag )
      {
            mousedrag = false;
            // console.log ("Exiting draw. Now blurring.");
            doodle.filter (BLUR, DOODLE_BLUR);    // just blur once
            //   console.log (doodle);
      }
  }
}




//--- demo -------------------------------------------------------------
// demo some test image and predict it
// get it from test set so have not used it in training


function makeDemo()
{
    demo_exists = true;
    var  i = AB.randomIntAtoB ( 0, NOTEST - 1 );  
    
    demo        = mnist.test_images[i];     
    var label   = mnist.test_labels[i];
    
   thehtml =  "Test image no: " + i + "<br>" + 
            "Classification: " + label + "<br>" ;
   AB.msg ( thehtml, 8 );
   
   // type "demo" in console to see raw data 
}


function drawDemo()
{
    var theimage = getImage ( demo );
     //  console.log (theimage);
     
    image ( theimage,   0,                canvasheight - ZOOMPIXELS,    ZOOMPIXELS,     ZOOMPIXELS  );      // magnified 
    image ( theimage,   ZOOMPIXELS+50,    canvasheight - ZOOMPIXELS,    PIXELS,         PIXELS      );      // original
    
    noFill();
    stroke (255);
    rect (0,    canvasheight - ZOOMPIXELS,    ZOOMPIXELS,         ZOOMPIXELS      );      //

    
}


function guessDemo()
{
   let inputs = getInputs ( demo ); 
   
  demo_inputs = inputs;  // can inspect in console 
  
  let prediction    = nn.predict(inputs);       // array of outputs 
  let guess         = findMax(prediction);      // the top output 

   thehtml =   " We classify it as: " + greenspan + guess + "</span>" ;
   AB.msg ( thehtml, 9 );
}


//--- doodle -------------------------------------------------------------

function drawDoodle()
{
    // doodle is createGraphics not createImage
    let theimage = doodle.get();
    // console.log (theimage);
    dest = theimage;    
    
    let xend = xstart + ZOOMPIXELS;
    let yend = ystart + ZOOMPIXELS;
    
    // Load all the pixels
    dest.loadPixels();
    theimage.loadPixels();
    
    // Begin our loop for every pixel
    for (let x = 0; x < dest.width; x++) {
        for (let y = 0; y < dest.height; y++) {
          // Each pixel location (x,y) gets passed into a function called convolution()
          // The convolution() function returns a new color to be displayed.
          let kernelsize = 3;
          let result = convolution(theimage, x + xstart, y + ystart, kernel, kernelsize);
          let index = (x + y * dest.width) * 4;
          dest.pixels[index + 0] = result[0];
          dest.pixels[index + 1] = result[1];
          dest.pixels[index + 2] = result[2];
          dest.pixels[index + 3] = 255;
        }
    }
    
    dest.updatePixels();
    image(dest, xstart, ystart);
    maxpool(dest, 5, xstart, ystart);
    
    // Top-left corner of the img is at (10, 10)
    // Width and height are 50 x 50
    // image(img, 10, 10, 50, 50);
    
    // image(imagename, TOPROW, TOPCOLUMN, WIDTH, HEIGHT);
    image ( theimage,   0,                0,    ZOOMPIXELS,     ZOOMPIXELS  );      // original 
    image ( theimage,   ZOOMPIXELS+50,    0,    PIXELS,         PIXELS      );      // shrunken image top right

    noFill();
    stroke (255);
    rect ( 0,                0,    ZOOMPIXELS,     ZOOMPIXELS  );      //

    // NOTE: I had to put these functions - convolution, maxpool and findMax - within drawDoolde()
    // as they were causing an error outside (messing up the training score). Don't know why!
    function convolution(img, x, y, kernel, kernelsize) {
    
      // Going to sum the RGB values of all the pixels
      let rsum = 0.0;
      let gsum = 0.0;
      let bsum = 0.0;
    
      // Offset around the center pixel
      let offset = floor(kernelsize / 2);
    
      // Loop through convolution kernel
      for (let i = 0; i < kernelsize; i++) {
        for (let j = 0; j < kernelsize; j++) {
    
          // What pixel are we testing
          let xpos = x + i - offset;
          let ypos = y + j - offset;
          // Find the 1D location in the array
          let index = (xpos + img.width * ypos) * 4;
    
          // Make sure we haven't walked off the edge of the pixel array
          // It is often good when looking at neighboring pixels to make sure we have not gone off the edge of the pixel array by accident.
          index = constrain(index, 0, img.pixels.length - 1);
    
          // Calculate the convolution
          // We sum all the neighboring pixels
          // multiplied by the weights in the convolution kernel.
          rsum += img.pixels[index + 0] * kernel[i][j];
          gsum += img.pixels[index + 1] * kernel[i][j];
          bsum += img.pixels[index + 2] * kernel[i][j];
        }
      }
      // Return an array with the three color values
      return [rsum, gsum, bsum];
    }
    
    // This reluing function will iterate over all the
    // "pooled" areas and draw a rectangle showing the
    // brightest pixel
    function maxpool(img, skip, xoff, yoff) {
      // Check all the pixels
      for (let x = 0; x < img.width; x += skip) {
        for (let y = 0; y < img.height; y += skip) {
          // Find the brightest pixel
          let brightest = findMax(img, x, y, skip);
          // Draw the rectangle
          fill(brightest[0], brightest[1], brightest[2]);
          noStroke();
          rectMode(CORNER);
          rect(x + xoff, y + yoff, skip, skip);
        }
      }
    }
    
    // This function finds the brightest pixel in a smaller area
    function findMax(img, xstart, ystart, skip) {
      // Brightest so far
      let record = 0;
      let brightest = [0, 0, 0];
      for (let x = 0; x < skip; x++) {
        for (let y = 0; y < skip; y++) {
          // Find the 1D location in the array
          let index = ((x + xstart) + (y + ystart) * img.width) * 4;
          // Look at RGB
          let r = img.pixels[index + 0];
          let g = img.pixels[index + 1];
          let b = img.pixels[index + 2];
          // Add it up
          let sum = r + g + b;
          // Is this the new brightest pixel?
          if (sum > record) {
            record = sum;
            brightest = [r, g, b];
          }
        }
      }
      // Return the result
      return brightest;
    }
// here
}


function guessDoodle() 
{
   // doodle is createGraphics not createImage
   let img = doodle.get();
  
  img.resize ( PIXELS, PIXELS );     
  img.loadPixels();

  // set up inputs   
  let inputs = [];
  for (let i = 0; i < PIXELSSQUARED ; i++) 
  {
     // inputs[i] = img.pixels[i * 4] / 255; // Original calc
     // TEST:
     //console.log("inputs[i] = " + inputs[i]);
     //console.log("inputs[i] * factor = " + inputs[i] * inputDiffFactor);
     if ((inputs[i] * inputDiffFactor) < 1) {
         // Use factored value
         inputs[i] = (img.pixels[i * 4] / 255) * inputDiffFactor; 
     }
     else {
         // Go with original value
         inputs[i] = img.pixels[i * 4] / 255; // Original calc               
     }
  }
  
  doodle_inputs = inputs;     // can inspect in console 

  // feed forward to make prediction 
  let prediction    = nn.predict(inputs);       // array of outputs 
  let b             = find12(prediction);       // get no.1 and no.2 guesses  

  rateDoodleSuccess = (countCorrectDoodleGuess * 100) / countAllDoodleGuess;
  rateDoodleSuccess = round(rateDoodleSuccess);

  thehtml = " Correct: " + countCorrectDoodleGuess + "   Incorrect: " + countIncorrectDoodleGuess + 
            "   Success Rate: " + rateDoodleSuccess + "%<br>" +
            " We classify it as: " + greenspan + b[0] + "</span> <br>" +
            " No.2 guess is: " + greenspan + b[1] + "</span>";
  AB.msg ( thehtml, 2 );
}


function wipeDoodle()    
{
    doodle_exists = false;
    doodle.background('black');
}


function markCorrect()    
{
    countCorrectDoodleGuess = countCorrectDoodleGuess + 1;
    countAllDoodleGuess = countAllDoodleGuess + 1;
}

function secondCorrect()    
{
    countCorrectDoodleGuess = countCorrectDoodleGuess + 0.5;
    countAllDoodleGuess = countAllDoodleGuess + 1;
}

function markIncorrect()    
{
    countIncorrectDoodleGuess = countIncorrectDoodleGuess + 1;
    countAllDoodleGuess = countAllDoodleGuess + 1;
}

function clearScore()    
{
    countCorrectDoodleGuess = 0;
    countIncorrectDoodleGuess = 0;
    countAllDoodleGuess = 0;
}


// --- debugging --------------------------------------------------
// in console
// showInputs(demo_inputs);
// showInputs(doodle_inputs);


function showInputs ( inputs )
// display inputs row by row, corresponding to square of pixels 
{
    var str = "";
    for (let i = 0; i < inputs.length; i++) 
    {
      if ( i % PIXELS == 0 )    str = str + "\n";                                   // new line for each row of pixels 
      var value = inputs[i];
      str = str + " " + value.toFixed(2) ; 
    }
    console.log (str);
}