// Cloned by Abdelshafa Abdala on 20 Nov 2022 from World "CharRecognition_UsingCNN (clone by Dheera(21261395))" by Dheera
// Please leave this clone trail here.
const PIXELS=28,
PIXELSSQUARED=PIXELS*PIXELS,
NOTRAIN=124800,
NOTEST=20800,
noinput=PIXELSSQUARED,nohidden=64,
nooutput=10,
learningrate=.1;
let do_training=!0;
const TRAINPERSTEP=15,
TESTPERSTEP=5,
ZOOMFACTOR=7,
ZOOMPIXELS=7*PIXELS,
canvaswidth=PIXELS+ZOOMPIXELS+50,
canvasheight=3*ZOOMPIXELS+100,
DOODLE_THICK=18,
DOODLE_BLUR=3;
let mnist,
mycnn,
mycnnTrain,
mycnnModel,
doodle,demo,
alphabets=["A","B","C","D","E","F","G","H","I","J","K","L","M","N","O","P","Q","R","S","T","U","V","W","X","Y","Z"],
trainrun=1,
train_index=0,
testrun=1,
test_index=0,
total_tests=0,
total_correct=0,
doodle_exists=!1,
demo_exists=!1,
mousedrag=!1;
var train_inputs,test_inputs,demo_inputs,doodle_inputs,thehtml;
function randomWeight()
{
return AB.randomFloatAtoB(-.5,.5)}AB.headerCSS({"max-height":"95vh"}),
thehtml="<hr> <h1> 1. Doodle </h1> Top row: Doodle (left) and shrunk (right). <br> Draw your doodle in top LHS. <button onclick='wipeDoodle();' class='normbutton' >Clear and Re-draw</button> <br> ",
AB.msg(thehtml,1),thehtml="<hr> <h1> 2. Training </h1> Middle row: Training image magnified (left) and original (right). <br> <button onclick='do_training = false;' class='normbutton' >Pause training</button> <button onclick='do_training = true;' class='normbutton' >Resume training</button> <br> ",
AB.msg(thehtml,3),thehtml="<h3> Hidden tests </h3> ",
AB.msg(thehtml,5),thehtml="<hr> <h1> 3. Demo </h1> Bottom row: Test image magnified (left) and original (right). <br> The network is <i>not</i> trained on any of these images. <br> <button onclick='makeDemo();' class='normbutton' >Demo test image</button> <br> ",
AB.msg(thehtml,7);
const bluespan="<span style='font-weight:bold; font-size:large; color:darkblue'> ";
function setup()
{
createCanvas(canvaswidth,canvasheight),(doodle=createGraphics(ZOOMPIXELS,ZOOMPIXELS)).pixelDensity(1),
wipeDoodle(),AB.loadingScreen(),$.getScript("/uploads/codingtrain/matrix.js",
function(){$.getScript("/uploads/dheera0704/convnet3.js",
function(){$.getScript("/uploads/dheera0704/mnistDhe.js",
function()
{console.log("All JS Files loaded");
let t=[];
t.push(
{type:"input",out_sx:28,out_sy:28,out_depth:1}),
t.push({type:"conv",sx:5,filters:8,stride:1,pad:2,activation:"relu"}),
t.push({type:"pool",sx:2,stride:2}),
t.push({type:"conv",sx:5,filters:16,stride:1,pad:2,activation:"relu"}),
t.push({type:"pool",sx:3,stride:3}),
t.push({type:"softmax",num_classes:26}),
(
mycnnModel=new convnetjs.Net).makeLayers(t),mycnnTrain=new convnetjs.SGDTrainer(mycnnModel,
{
method:"adadelta",momentum:.9,batch_size:10,l2_decay:.001}),loadData()})})})}
function loadData(){loadMNIST(
function(t)
{
mnist=t;let e=0;
for(;e<NOTRAIN;e++)rotateImage(mnist.train_images[e]);
for(e=0;e<NOTEST;e++)rotateImage(mnist.test_images[e]);
console.log("All data loaded into Emnist object."),
console.log(mnist),AB.removeLoading()})}
function getImage(t){let e=createImage(PIXELS,PIXELS);e.loadPixels();
for(let n=0;n<PIXELSSQUARED;n++)
{
let o=t[n],s=4*n;e.pixels[s+0]=o,e.pixels[s+1]=o,e.pixels[s+2]=o,e.pixels[s+3]=255}
return e.updatePixels(),e}
function getInputs(t){let e=[];
for(let n=0;n<PIXELSSQUARED;n++){let o=t[n];e[n]=o/255}return e}
function rotateImage(t)
{
for(let e=0;e<PIXELS;e++)
for(let n=e;n<PIXELS;n++)
{
let o=e*PIXELS+n,s=n*PIXELS+e,i=t[o];t[o]=t[s],t[s]=i}}
function trainit(t)
{
let e=mnist.train_images[train_index],n=mnist.train_labels[train_index];
if(t)
{
var o=getImage(e);
image(o,0,ZOOMPIXELS+50,
ZOOMPIXELS,ZOOMPIXELS),
image(o,ZOOMPIXELS+50,
ZOOMPIXELS+50,
PIXELS,PIXELS)}
let s=getInputs(e);train_inputs=s;
{
let t=getmycnnInputs(s);
mycnnTrain.train(t,n)}thehtml=" trainrun: "+trainrun+"<br> no: "+train_index,AB.msg(thehtml,4),++train_index==NOTRAIN&&(train_index=0,
console.log("finished trainrun: "+trainrun),trainrun++)}
function getmycnnInputs(t){
for(var e=new convnetjs.Vol(28,28,1,0),n=0;n<PIXELSSQUARED;n++)e.w[n]=t[n];
return e}
}
function find12(t)
{
let e=0,n=0,o=0,s=0;
for(
let i=0;i<t.length;
i++)t[i]>o?(n=e,s=o,e=i,o=t[i]):t[i]>s&&(n=i,s=t[i]);
return[e,n]}
function findMax(t)
{
let e=0,n=0;
for
(
let o=0;
o<t.length;
o++)t[o]>n&&(e=o,n=t[o]);
return e}
function draw()
{
if(void 0!==mnist){if(background("black"),strokeWeight(1),
stroke("green"),
rect(0,0,
ZOOMPIXELS,ZOOMPIXELS),
textSize(10),
textAlign(CENTER),
text("DOODLE HERE",
ZOOMPIXELS/2,
ZOOMPIXELS/2),
do_training)
{
for
(
let t=0;
t<TRAINPERSTEP;
t++)trainit(0===t);
for(let t=0;
t<TESTPERSTEP;
t++)testit()}
if(demo_exists&&(drawDemo(),
guessDemo()),
doodle_exists&&(drawDoodle(),
guessDoodle()),
mouseIsPressed)
{var t=ZOOMPIXELS+20;
mouseX<t&&mouseY<t&&pmouseX<t&&pmouseY<t&&(mousedrag=!0,
doodle_exists=!0,
doodle.stroke("red"),
strokeJoin(ROUND),
doodle.strokeWeight(DOODLE_THICK),
doodle.line(mouseX,mouseY,pmouseX,pmouseY))}
else mousedrag&&(mousedrag=!1,
doodle.filter(BLUR,DOODLE_BLUR))}}
function makeDemo()
{
demo_exists=!0;
var t=AB.randomIntAtoB(0,NOTEST-1);
demo=mnist.test_images[t];var e=mnist.test_labels[t];
thehtml="Test image no: "+t+"<br>Classification: "+alphabets[e-1]+"<br>",
AB.msg(thehtml,8)}function drawDemo(){var t=getImage(demo);image(t,0,canvasheight-ZOOMPIXELS,ZOOMPIXELS,ZOOMPIXELS),image(t,ZOOMPIXELS+50,canvasheight-ZOOMPIXELS,PIXELS,PIXELS)}function guessDemo(){let t=getInputs(demo);demo_inputs=t;let e=getmycnnInputs(t),n=findMax(mycnnModel.forward(e).w);thehtml=" We classify it as: "+bluespan+alphabets[n-1]+"</span>",AB.msg(thehtml,9)}function drawDoodle(){let t=doodle.get();image(t,0,0,ZOOMPIXELS,ZOOMPIXELS),image(t,ZOOMPIXELS+20,0,PIXELS,PIXELS)}function guessDoodle(){let t=doodle.get();t.resize(PIXELS,PIXELS),t.loadPixels();let e=[];for(let n=0;n<PIXELSSQUARED;n++)e[n]=t.pixels[4*n]/255;doodle_inputs=e;let n=getmycnnInputs(e),o=find12(mycnnModel.forward(n).w);thehtml=" Our 1st Guess is: "+bluespan+alphabets[o[0]-1]+"</span> <br> Our 2nd Guess is: "+bluespan+alphabets[o[1]-1]+"</span>",AB.msg(thehtml,2)}function wipeDoodle(){doodle_exists=!1,doodle.background("black")}function showInputs(t){var e="";for(let n=0;n<t.length;n++){n%PIXELS==0&&(e+="\n"),e=e+" "+t[n].toFixed(2)}console.log(e)}