Code viewer for World: Assignment 2 Master Copy

// Cloned by Aidan Desmond on 10 Dec 2019 from World "Character recognition neural network" by "Coding Train" project 
// Please leave this clone trail here.
 

// Port of Character recognition neural network from here:
// https://github.com/CodingTrain/Toy-Neural-Network-JS/tree/master/examples/mnist
// with many modifications 


// --- defined by MNIST - do not change these ---------------------------------------

const PIXELS        = 28;                       // images in data set are tiny 
const PIXELSSQUARED = PIXELS * PIXELS;

// number of training and test exemplars in the data set:
const NOTRAIN = 60000;
const NOTEST  = 10000;

//--- can modify all these ------------------------------------------------------------------------------------------------------------
//--- Coding Comments A. Desmond ------------------------------------------------------------------------------------------------------
//--- 
//--- Test 1    Baseline the general performance of the training algorithm - no changes made to any of the parameter
//---           
//---           Epochs completed: 3 - interesting observation when the epochs went from 2 to 3, it jumped up from 94.46% to 
//---           100% performance then dropped back to 95.56%
//---
//---           Demo Test - Ran through the 50 demos and it had a 100% accuracy   
//--- 
//---           Doodle Test - Ran 3 * 10 and got 10%, 50% and 10% accuracy for each - interesting observation - when you exagerated the 
//---           3 it seemed to recognise it better. It couldnt recognise 1 which I would have thought would have been an easier one to 
//---           recognise
//---           
//--- Test 2    No of Hidden Nodes        
//---           #1 No of Hidden Nodes = 10 - performance of cycling through the test set improved as expected but max % was 84%
//---           #2 No of Hidden Nodes = 25 - max % was improved from above to 92%
//---           #3 No of Hidden Nodes = 40 - max % slightly improved to 92.5%
//---           #4 No of Hidden Nodes = 55 - max % improved to 94%
//---           #5 No of Hidden Nodes = 64 - as per Test 1 above, baseline test with max % of 95.56%
//---           #6 No of Hidden Nodes = 80 - slower performance as expected then basleine, max percentage dropped to 94%
//---           #7 No of Hidden Nodes = 100 - performance further slows and the max percentage hits 95.6%
//---          
//---           Result - based on performance and max percentage observed default reamins 64
//---          
//--- Test 3    Learning Rate Adjustment
//---           #1 Learning Rate = 0 - training deteriorated and sat between 11% and 13%
//---           #2 Learning Rate = 0.1 - as per results in Test 1 - maxed out at 95.56%
//---           #3 Learning Rate = 0.2 - no real improvement observed from 0.1
//---           #4 Learning Rate = 0.3 - performance seemed slightly down - max % was 93.5%
//---           #5 Learning Rate = 0.4 - similiar to 0.3 max % seemed to plateau around 93%
//---           #6 Learning Rate = 0.5 - performance decrease, max % dropped to 89% - 91%
//---           #7 Learning Rate = 0.6 - further performance decrase, max % dropped to ~86%
//---           #8 Learning Rate = 0.7 - similar performance as above for 0.6
//---           #9 Learning Rate = 0.8 - similar performance as above for 0.6
//---           #10 Learning Rate = 0.9 - further deterioration, max % dropped to ~83%
//---           #11 Learning Rate = 1.0 - similiar to the above, max % dropped to ~83%
//---
//---           Result - no real improvement observed and left learning rate at 0.1
//---
//--- Test 4    Copied over nn.js to be able to update the file, specificlly to flip between the activation code from Sigmoid to Tanh.
//---           Changed the activation code to Tanh, didnt have a significant impact from what was observed with sigmoid, it
//---           did seem somewhat slower in its performance to reach a simliar percentage
//---           
//---           Result - left activitation code as Sigmoid
//--- 
//--- Test 5    Update to DOODLE_THICK setting
//---           Training alorithm was let run for 3 epochs to reach ~95% performance, the DOODLE_THICK setting was updated as follows
//---           #1 const DOODLE_THICK = 3 - Demo Test: 95% accuracy - Result 3 cycles of doodles 0-9: 20%, 20% & 30% 
//---           #2 const DOODLE_THICK = 6 - Demo Test: 95% accuracy - Result 3 cycles of doodles 0-9: 10%, 20% & 30% 
//---           #3 const DOODLE_THICK = 9 - Demo Test: 80% accuracy - Result 3 cycles of doodles 0-9: 30%, 20% & 30% 
//---           #4 const DOODLE_THICK = 12 - Demo Test: 80% accuracy - Result 3 cycles of doodles 0-9: 30%, 30% & 20% 
//---           #5 const DOODLE_THICK = 15 - Demo Test: 95% accuracy - Result 3 cycles of doodles 0-9: 30%, 30% & 30% 
//---           #6 const DOODLE_THICK = 18 - Demo Test: 100% accuracy - Result 3 cycles of doodles 0-9: 20%, 10% & 40% 
//---           #7 const DOODLE_THICK = 21 - Demo Test: 90% accuracy - Result 3 cycles of doodles 0-9: 30%, 20& & 10% 
//---           #8 const DOODLE_THICK = 24 - Demo Test: 100% accuracy - Result 3 cycles of doodles 0-9: 30%, 20% & 10% 
//---           #9 const DOODLE_THICK = 27 - Demo Test: 85% accuracy - Result 3 cycles of doodles 0-9: 20%, 20% & 20&  
//---           #10 const DOODLE_THICK = 30 - Demo Test: 95% accuracy - Result 3 cycles of doodles 0-9: 20%, 0% & 10% 
//---
//---           Result - thickness 15 seemed to improve accuracy closely followed by 9 or 12 seemed to be the most accurate but its still 
//---           marginal with generally low accuracy so thickness is updated to 15
//---
//--- Test 6    Update to DOODLE_BLUR setting
//---           Training alorithm was let run for 3 epochs to reach ~95% performance, the DOODLE_BLUR setting was updated as follows
//---           #1 const DOODLE_BLUR = 0 - Demo Test: 90% accuracy - Result 3 cycles of doodles 0-9: 10%, 20% & 20% 
//---           #2 const DOODLE_BLUR = 1 - Demo Test: 100% accuracy - Result 3 cycles of doodles 0-9: 20%, 20% & 20% 
//---           #3 const DOODLE_BLUR = 2 - Demo Test: 95% accuracy - Result 3 cycles of doodles 0-9: 20%, 20% & 33% 
//---           #4 const DOODLE_BLUR = 3 - Demo Test: 80% accuracy - Result 3 cycles of doodles 0-9: 20%, 20% & 10% 
//---           #5 const DOODLE_BLUR = 4 - Demo Test: 95% accuracy - Result 3 cycles of doodles 0-9: 20%, 10% & 30% 
//---           #6 const DOODLE_BLUR = 5 - Demo Test: 100% accuracy - Result 3 cycles of doodles 0-9: 20%, 30% & 10% 
//---           #7 const DOODLE_BLUR = 6 - Demo Test: 100% accuracy - Result 3 cycles of doodles 0-9: 20%, 20% & 20% 
//---           #8 const DOODLE_BLUR = 7- Demo Test: 95% accuracy - Result 3 cycles of doodles 0-9: 10%, 30% & 20% 
//---           #9 const DOODLE_BLUR = 8 - Demo Test: 90% accuracy - Result 3 cycles of doodles 0-9: 20%, 20% & 20% 
//---           #10 const DOODLE_BLUR = 9 - Demo Test: 90% accuracy - Result 3 cycles of doodles 0-9: 20%, 20% & 20% 
//---
//---           Result - updated blur to 2 - the effects of blur seem to be quite subtle
//---
//--- Other MNIST Algorithms
//---
//---           https://transcranial.github.io/keras-js/#/mnist-cnn - provides ability to do a doodle
//---
//--- Coding Comments A. Desmond ------------------------------------------------------------------------------------------------------

// no of nodes in network 
const noinput  = PIXELSSQUARED;
const nohidden = 64; // Default 64
const nooutput = 10; // Default 10

const learningrate = 0.1;   // default 0.1  

// should we train every timestep or not 
let do_training = true;

// how many to train and test per timestep 
const TRAINPERSTEP = 30; // Default 30
const TESTPERSTEP  = 5;  // Default 5

// multiply it by this to magnify for display 
const ZOOMFACTOR    = 7; // Default 7                       
const ZOOMPIXELS    = ZOOMFACTOR * PIXELS; 

// 3 rows of
// large image + 50 gap + small image    
// 50 gap between rows 

const canvaswidth = ( PIXELS + ZOOMPIXELS ) + 50;
const canvasheight = ( ZOOMPIXELS * 3 ) + 100;

const DOODLE_THICK = 15;    // thickness of doodle lines        - Default 18
const DOODLE_BLUR = 2;      // blur factor applied to doodles   - Default 3

let mnist;      
// all data is loaded into this 
// mnist.train_images
// mnist.train_labels
// mnist.test_images
// mnist.test_labels

let nn;

let trainrun = 1;
let train_index = 0;

let testrun = 1;
let test_index = 0;
let total_tests = 0;
let total_correct = 0;

// images in LHS:
let doodle, demo;
let doodle_exists = false;
let demo_exists = false;

let mousedrag = false;      // are we in the middle of a mouse drag drawing?  


// save inputs to global var to inspect
// type these names in console 
var train_inputs, test_inputs, demo_inputs, doodle_inputs;


// Matrix.randomize() is changed to point to this. Must be defined by user of Matrix. 

function randomWeight()
{
    return ( AB.randomFloatAtoB ( -0.5, 0.5 ) ); // Default -0.5 to 0.5
            // Coding Train default is -1 to 1
}    

// CSS trick 
// make run header bigger 
 $("#runheaderbox").css ( { "max-height": "95vh" } );

//--- start of AB.msgs structure: ---------------------------------------------------------
// We output a serious of AB.msgs to put data at various places in the run header 
var thehtml;

  // 1 Doodle header 
  thehtml = "<hr> <h1> 1. Doodle </h1> Top row: Doodle (left) and shrunk (right). <br> " +
        " Draw your doodle in top LHS. <button onclick='wipeDoodle();' class='normbutton' >Clear doodle</button> <br> ";
   AB.msg ( thehtml, 1 );

  // 2 Doodle variable data (guess)
  
  // 3 Training header
  thehtml = "<hr> <h1> 2. Training </h1> Middle row: Training image magnified (left) and original (right). <br>  " +
        " <button onclick='do_training = false;' class='normbutton' >Stop training</button> <br> ";
  AB.msg ( thehtml, 3 );
     
  // 4 variable training data 
  
  // 5 Testing header
  thehtml = "<h3> Hidden tests </h3> " ;
  AB.msg ( thehtml, 5 );
           
  // 6 variable testing data 
  
  // 7 Demo header 
  thehtml = "<hr> <h1> 3. Demo </h1> Bottom row: Test image magnified (left) and  original (right). <br>" +
        " The network is <i>not</i> trained on any of these images. <br> " +
        " <button onclick='makeDemo();' class='normbutton' >Demo test image</button> <br> ";
   AB.msg ( thehtml, 7 );
   
  // 8 Demo variable data (random demo ID)
  // 9 Demo variable data (changing guess)
  
const greenspan = "<span style='font-weight:bold; font-size:x-large; color:darkgreen'> "  ;

//--- end of AB.msgs structure: ---------------------------------------------------------

function setup() 
{
  createCanvas ( canvaswidth, canvasheight );

  doodle = createGraphics ( ZOOMPIXELS, ZOOMPIXELS );       // doodle on larger canvas 
  doodle.pixelDensity(1);                                   // AD Comment: Updated pixel desity from 1 to 3 - didnt have any imprvement
  
// JS load other JS 
// maybe have a loading screen while loading the JS and the data set 

      AB.loadingScreen();
 
 $.getScript ( "/uploads/codingtrain/matrix.js", function()
 {
   $.getScript ( "/uploads/desmoa02/nn.js", function()         // Copied over nn.js
   {
        $.getScript ( "/uploads/codingtrain/mnist.js", function()
        {
            console.log ("All JS loaded");
            nn = new NeuralNetwork(  noinput, nohidden, nooutput );
            nn.setLearningRate ( learningrate );
            loadData();
        });
   });
 });
}

// load data set from local file (on this server)

function loadData()    
{
  loadMNIST ( function(data)    
  {
    mnist = data;
    console.log ("All data loaded into mnist object:")
    console.log(mnist);
    AB.removeLoading();     // if no loading screen exists, this does nothing 
  });
}



function getImage ( img )      // make a P5 image object from a raw data array   
{
    let theimage  = createImage (PIXELS, PIXELS);    // make blank image, then populate it 
    theimage.loadPixels();        
    
    for (let i = 0; i < PIXELSSQUARED ; i++) 
    {
        let bright = img[i];
        let index = i * 4;
        theimage.pixels[index + 0] = bright;
        theimage.pixels[index + 1] = bright;
        theimage.pixels[index + 2] = bright;
        theimage.pixels[index + 3] = 255;
    }
    
    theimage.updatePixels();
    return theimage;
}


function getInputs ( img )      // convert img array into normalised input array 
{
    let inputs = [];
    for (let i = 0; i < PIXELSSQUARED ; i++)          
    {
        let bright = img[i];
        inputs[i] = bright / 255;       // normalise to 0 to 1
    } 
    return ( inputs );
}

 

function trainit (show)        // train the network with a single exemplar, from global var "train_index", show visual on or off 
{
  let img   = mnist.train_images[train_index];
  let label = mnist.train_labels[train_index];
  
  // optional - show visual of the image 
  if (show)                
  {
    var theimage = getImage ( img );    // get image from data array 
    image ( theimage,   0,                ZOOMPIXELS+50,    ZOOMPIXELS,     ZOOMPIXELS  );      // magnified 
    image ( theimage,   ZOOMPIXELS+50,    ZOOMPIXELS+50,    PIXELS,         PIXELS      );      // original
  }

  // set up the inputs
  let inputs = getInputs ( img );       // get inputs from data array 

  // set up the outputs
  let targets = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0];
  targets[label] = 1;       // change one output location to 1, the rest stay at 0 

  //console.log(train_index);  //AD Comment: Enable console logging
  //console.log(inputs);
  //console.log(targets);

  train_inputs = inputs;        // can inspect in console 
  nn.train ( inputs, targets );

  thehtml = " trainrun: " + trainrun + "<br> no: " + train_index ;
  AB.msg ( thehtml, 4 );

  train_index++;
  if ( train_index == NOTRAIN ) 
  {
    train_index = 0;
    console.log( "finished trainrun: " + trainrun );
    trainrun++;
  }
}


function testit()    // test the network with a single exemplar, from global var "test_index"
{ 
  let img   = mnist.test_images[test_index];
  let label = mnist.test_labels[test_index];

  // set up the inputs
  let inputs = getInputs ( img ); 
  
  test_inputs = inputs;        // can inspect in console 
  let prediction    = nn.predict(inputs);       // array of outputs 
  let guess         = findMax(prediction);      // the top output 

  total_tests++;
  if (guess == label)  total_correct++;

  let percent = (total_correct / total_tests) * 100 ;
  
  thehtml =  " testrun: " + testrun + "<br> no: " + total_tests + " <br> " +
        " correct: " + total_correct + "<br>" +
        "  score: " + greenspan + percent.toFixed(2) + "</span>";
  AB.msg ( thehtml, 6 );

  test_index++;
  if ( test_index == NOTEST ) 
  {
    console.log( "finished testrun: " + testrun + " score: " + percent.toFixed(2) );
    testrun++;
    test_index = 0;
    total_tests = 0;
    total_correct = 0;
  }
}

//--- find no.1 (and maybe no.2) output nodes ---------------------------------------
// (restriction) assumes array values start at 0 (which is true for output nodes) 


function find12 (a)         // return array showing indexes of no.1 and no.2 values in array 
{
  let no1 = 0;
  let no2 = 0;
  let no1value = 0;     
  let no2value = 0;
  
  for (let i = 0; i < a.length; i++) 
  {
    if (a[i] > no1value) 
    {
      no1 = i;
      no1value = a[i];
    }
    else if (a[i] > no2value) 
    {
      no2 = i;
      no2value = a[i];
    }
  }
  
  var b = [ no1, no2 ];
  return b;
}


// just get the maximum - separate function for speed - done many times 
// find our guess - the max of the output nodes array

function findMax (a)        
{
  let no1 = 0;
  let no1value = 0;     
  
  for (let i = 0; i < a.length; i++) 
  {
    if (a[i] > no1value) 
    {
      no1 = i;
      no1value = a[i];
    }
  }
  
  return no1;
}




// --- the draw function -------------------------------------------------------------
// every step:
 
function draw() 
{
  // check if libraries and data loaded yet:
  if ( typeof mnist == 'undefined' ) return;


// how can we get white doodle on black background on yellow canvas?
//        background('#ffffcc');    doodle.background('black');

      background ('black');
    
if ( do_training )    
{
  // do some training per step 
    for (let i = 0; i < TRAINPERSTEP; i++) 
    {
      if (i == 0)    trainit(true);    // show only one per step - still flashes by  
      else           trainit(false);
    }
    
  // do some testing per step 
    for (let i = 0; i < TESTPERSTEP; i++) 
      testit();
}

  // keep drawing demo and doodle images 
  // and keep guessing - we will update our guess as time goes on 
  
  if ( demo_exists )
  {
    drawDemo();
    guessDemo();
  }
  if ( doodle_exists ) 
  {
    drawDoodle();
    guessDoodle();
  }


// detect doodle drawing 
// (restriction) the following assumes doodle starts at 0,0 

  if ( mouseIsPressed )         // gets called when we click buttons, as well as if in doodle corner  
  {
     // console.log ( mouseX + " " + mouseY + " " + pmouseX + " " + pmouseY );
     var MAX = ZOOMPIXELS + 20;     // can draw up to this pixels in corner 
     if ( (mouseX < MAX) && (mouseY < MAX) && (pmouseX < MAX) && (pmouseY < MAX) )
     {
        mousedrag = true;       // start a mouse drag 
        doodle_exists = true;
        doodle.stroke(255);
        doodle.strokeWeight( DOODLE_THICK );
        doodle.line(mouseX, mouseY, pmouseX, pmouseY);      
     }
  }
  else 
  {
      // are we exiting a drawing
      if ( mousedrag )
      {
            mousedrag = false;
            // console.log ("Exiting draw. Now blurring.");
            doodle.filter (BLUR, DOODLE_BLUR);    // just blur once 
            //   console.log (doodle);

      }
  }
}

//--- demo -------------------------------------------------------------
// demo some test image and predict it
// get it from test set so have not used it in training


function makeDemo()
{
    demo_exists = true;
    var  i = AB.randomIntAtoB ( 0, NOTEST - 1 );  
    
    demo        = mnist.test_images[i];     
    var label   = mnist.test_labels[i];
    
   thehtml =  "Test image no: " + i + "<br>" + 
            "Classification: " + label + "<br>" ;
   AB.msg ( thehtml, 8 );
   
   // type "demo" in console to see raw data 
}


function drawDemo()
{
    var theimage = getImage ( demo );
     //  console.log (theimage);
     
    image ( theimage,   0,                canvasheight - ZOOMPIXELS,    ZOOMPIXELS,     ZOOMPIXELS  );      // magnified 
    image ( theimage,   ZOOMPIXELS+50,    canvasheight - ZOOMPIXELS,    PIXELS,         PIXELS      );      // original
}


function guessDemo()
{
   let inputs = getInputs ( demo ); 
   
  demo_inputs = inputs;  // can inspect in console 
  
  let prediction    = nn.predict(inputs);       // array of outputs 
  let guess         = findMax(prediction);      // the top output 

   thehtml =   " We classify it as: " + greenspan + guess + "</span>" ;
   AB.msg ( thehtml, 9 );
}

//--- doodle -------------------------------------------------------------

function drawDoodle()
{
    // doodle is createGraphics not createImage
    let theimage = doodle.get();
    console.log (theimage); // AD Comment: Enable Console logging
    
    image ( theimage,   0,                0,    ZOOMPIXELS,     ZOOMPIXELS  );      // original 
    image ( theimage,   ZOOMPIXELS+50,    0,    PIXELS,         PIXELS      );      // shrunk
}
      
      
function guessDoodle() 
{
   // doodle is createGraphics not createImage
   let img = doodle.get();
  
  img.resize ( PIXELS, PIXELS );
  
  img.loadPixels();

  // set up inputs   
  let inputs = [];
  for (let i = 0; i < PIXELSSQUARED ; i++) 
  {
     inputs[i] = img.pixels[i * 4] / 255; // 
  }
  
  doodle_inputs = inputs;     // can inspect in console 

  // feed forward to make prediction 
  let prediction    = nn.predict(inputs);       // array of outputs 
  let b             = find12(prediction);       // get no.1 and no.2 guesses  

  thehtml =   " We classify it as: " + greenspan + b[0] + "</span> <br>" +
            " No.2 guess is: " + greenspan + b[1] + "</span>";
  AB.msg ( thehtml, 2 );
}


function wipeDoodle()    
{
    doodle_exists = false;
    doodle.background('black');
}

// --- debugging --------------------------------------------------
// in console
// showInputs(demo_inputs);
// showInputs(doodle_inputs);


function showInputs ( inputs )
// display inputs row by row, corresponding to square of pixels 
{
    var str = "";
    for (let i = 0; i < inputs.length; i++) 
    {
      if ( i % PIXELS == 0 )    str = str + "\n";                                   // new line for each row of pixels 
      var value = inputs[i];
      str = str + " " + value.toFixed(2) ; 
    }
    console.log (str);
}