// Cloned by test on 8 Jan 2020 from World "MNIST-NN (by Daniel Lopes)" by Daniel Lopes
// Please leave this clone trail here.
function onLoad(){let t=new ActivationFunction(t=>t>0?t:1*(Math.exp(t)-1),t=>t>0?1:1*Math.exp(t));debug_inputs=!1,debug_targets=!1,debug_outputs=!1,debug_errors=!1,debug_gradients=!1,debug_hidden_gradients=!1,debug_predictions=!1,nn.setActivationFunction(t),nn.setLearningRate(.001);var e,n=document.getElementById("timer-label"),o=document.getElementById("timer-start"),i=document.getElementById("timer-stop"),s=0,a=0,r=0;function l(){++s>=60&&(s=0,++a>=60&&(a=0,r++)),n.textContent=(r?r>9?r:"0"+r:"00")+":"+(a?a>9?a:"0"+a:"00")+":"+(s>9?s:"0"+s),d()}function d(){e=setTimeout(l,1e3)}d(),o.onclick=function(){do_training=!0,d()},i.onclick=function(){do_training=!1,clearTimeout(e)}}const PIXELS=28,PIXELSSQUARED=PIXELS*PIXELS,NOTRAIN=6e4,NOTEST=1e4,noinput=PIXELSSQUARED,nohidden=88,nooutput=10;let do_training=!0;const TRAINPERSTEP=30,TESTPERSTEP=5,ZOOMFACTOR=7,ZOOMPIXELS=7*PIXELS,canvaswidth=PIXELS+ZOOMPIXELS+50,canvasheight=3*ZOOMPIXELS+100;let mnist,nn,doodle,demo,DOODLE_THICK=12,DOODLE_BLUR=3,trainrun=1,train_index=0,testrun=1,test_index=0,total_tests=0,total_correct=0,doodle_exists=!1,demo_exists=!1,mousedrag=!1;var train_inputs,test_inputs,demo_inputs,doodle_inputs;let stddev=Math.sqrt(2/noinput);function randomWeight(){let t=AB.randomFloatAtoB(-stddev,stddev);return console.log("weight: ",t),t}var thehtml;$("#runheaderbox").css({"max-height":"95vh"}),thehtml="<hr> <h1> 1. Doodle </h1> Top row: Doodle (left) and shrunk (right). <br> Draw your doodle in top LHS. <button onclick='wipeDoodle();' class='normbutton' >Clear doodle</button> <br> ",AB.msg(thehtml,1),thehtml="<hr> <h1> 2. Training </h1> Middle row: Training image magnified (left) and original (right). <br> <button onclick='do_training = false;' id='timer-stop' class='normbutton' >Stop training</button> <button onclick='do_training = true;' id='timer-start' class='normbutton' >Resume training</button> <br> ",AB.msg(thehtml,3),thehtml="<h3> Hidden tests </h3> Elapsed: <span id='timer-label'><time>00:00:00</time></span> <br>",AB.msg(thehtml,5),thehtml="<hr> <h1> 3. Demo </h1> Bottom row: Test image magnified (left) and original (right). <br> The network is <i>not</i> trained on any of these images. <br> <button onclick='makeDemo();' class='normbutton' >Demo test image</button> <br> ",AB.msg(thehtml,7);const greenspan="<span style='font-weight:bold; font-size:x-large; color:darkgreen'> ";function setup(){createCanvas(canvaswidth,canvasheight),(doodle=createGraphics(ZOOMPIXELS,ZOOMPIXELS)).pixelDensity(1),AB.loadingScreen(),$.getScript("/uploads/codingtrain/matrix.js",function(){$.getScript("/uploads/djjorjinho/nn.js",function(){$.getScript("/uploads/codingtrain/mnist.js",function(){console.log("All JS loaded"),nn=new NeuralNetwork(noinput,nohidden,nooutput),loadData(),onLoad()})})})}function loadData(){loadMNIST(function(t){mnist=t,console.log("All data loaded into mnist object:"),console.log(mnist),AB.removeLoading()})}function getImage(t){let e=createImage(PIXELS,PIXELS);e.loadPixels();for(let n=0;n<PIXELSSQUARED;n++){let o=t[n],i=4*n;e.pixels[i+0]=o,e.pixels[i+1]=o,e.pixels[i+2]=o,e.pixels[i+3]=255}return e.updatePixels(),e}function getInputs(t){let e=[];for(let n=0;n<PIXELSSQUARED;n++){let o=t[n];e[n]=o/255}return e}function trainit(t){let e=mnist.train_images[train_index],n=mnist.train_labels[train_index];if(t){var o=getImage(e);image(o,0,ZOOMPIXELS+50,ZOOMPIXELS,ZOOMPIXELS),image(o,ZOOMPIXELS+50,ZOOMPIXELS+50,PIXELS,PIXELS)}let i=getInputs(e),s=[0,0,0,0,0,0,0,0,0,0];s[n]=1,train_inputs=i,nn.train(i,s),thehtml=" trainrun: "+trainrun+"<br> no: "+train_index,AB.msg(thehtml,4),++train_index==NOTRAIN&&(train_index=0,console.log("finished trainrun: "+trainrun),trainrun++)}function testit(){let t=mnist.test_images[test_index],e=mnist.test_labels[test_index],n=getInputs(t);test_inputs=n;let o=findMax(nn.predict(n));total_tests++,o==e&&total_correct++;let i=total_correct/total_tests*100;thehtml=" testrun: "+testrun+"<br> no: "+total_tests+" <br> correct: "+total_correct+"<br> score: "+greenspan+i.toFixed(2)+"</span>",AB.msg(thehtml,6),++test_index==NOTEST&&(console.log("finished testrun: "+testrun+" score: "+i.toFixed(2)),testrun++,test_index=0,total_tests=0,total_correct=0)}function find12(t){let e=0,n=0,o=0,i=0;for(let s=0;s<t.length;s++)t[s]>o?(e=s,o=t[s]):t[s]>i&&(n=s,i=t[s]);return[e,n]}function findMax(t){let e=0,n=0;for(let o=0;o<t.length;o++)t[o]>n&&(e=o,n=t[o]);return e}function draw(){if(void 0!==mnist){if(background("black"),do_training){for(let t=0;t<TRAINPERSTEP;t++)trainit(0==t);for(let t=0;t<TESTPERSTEP;t++)testit()}if(demo_exists&&(drawDemo(),guessDemo()),doodle_exists&&(drawDoodle(),guessDoodle()),mouseIsPressed){var t=ZOOMPIXELS+20;mouseX<t&&mouseY<t&&pmouseX<t&&pmouseY<t&&(mousedrag=!0,doodle_exists=!0,doodle.stroke("white"),doodle.strokeWeight(DOODLE_THICK),doodle.line(mouseX,mouseY,pmouseX,pmouseY))}else mousedrag&&(mousedrag=!1,doodle.filter(BLUR,DOODLE_BLUR))}}function makeDemo(){demo_exists=!0;var t=AB.randomIntAtoB(0,NOTEST-1);demo=mnist.test_images[t];var e=mnist.test_labels[t];thehtml="Test image no: "+t+"<br>Classification: "+e+"<br>",AB.msg(thehtml,8)}function drawDemo(){var t=getImage(demo);image(t,0,canvasheight-ZOOMPIXELS,ZOOMPIXELS,ZOOMPIXELS),image(t,ZOOMPIXELS+50,canvasheight-ZOOMPIXELS,PIXELS,PIXELS)}function guessDemo(){let t=getInputs(demo);demo_inputs=t;let e=findMax(nn.predict(t));thehtml=" We classify it as: "+greenspan+e+"</span>",AB.msg(thehtml,9)}function drawDoodle(){let t=doodle.get();image(t,0,0,ZOOMPIXELS,ZOOMPIXELS),image(t,ZOOMPIXELS+50,0,PIXELS,PIXELS)}function guessDoodle(){let t=doodle.get();t.resize(PIXELS,PIXELS),t.loadPixels();let e=[];for(let n=0;n<PIXELSSQUARED;n++)e[n]=t.pixels[4*n]/255;doodle_inputs=e;let n=find12(nn.predict(e));thehtml=" We classify it as: "+greenspan+n[0]+"</span> <br> No.2 guess is: "+greenspan+n[1]+"</span>",AB.msg(thehtml,2)}function wipeDoodle(){doodle_exists=!1,doodle.background("black")}function showInputs(t){var e="";for(let n=0;n<t.length;n++){n%PIXELS==0&&(e+="\n"),e=e+" "+t[n].toFixed(2)}console.log(e)}