Code viewer for World: Letter recognition neural ...

// Cloned by Sunil Jagtap on 19 Nov 2022 from World "Character recognition neural network" by "Coding Train" project 
// Please leave this clone trail here.
 

// Port of Character recognition neural network from here:
// https://github.com/CodingTrain/Toy-Neural-Network-JS/tree/master/examples/mnist
// with many modifications 


// --- defined by MNIST - do not change these ---------------------------------------
AB.runloggedin;                 // Boolean. Are we running logged in.  
AB.myuserid;

const PIXELS        = 28;                       // images in data set are tiny 
const PIXELSSQUARED = PIXELS * PIXELS;

// number of training and test exemplars in the data set:
const NOTRAIN = 124800;
const NOTEST  = 20800;

const ALPHABETS = ["A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M", "N", "O", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z"];

//--- can modify all these --------------------------------------------------

// no of nodes in network 
const noinput  = PIXELSSQUARED;
const nohidden = 64;
const nooutput = 10;

const learningrate = 0.1;   // default 0.1  

// should we train every timestep or not 
let do_training = true;

// how many to train and test per timestep 
const TRAINPERSTEP = 30;
const TESTPERSTEP  = 5;

// multiply it by this to magnify for display 
const ZOOMFACTOR    = 7;                        
const ZOOMPIXELS    = ZOOMFACTOR * PIXELS; 

// 3 rows of
// large image + 50 gap + small image    
// 50 gap between rows 

const canvaswidth = ( PIXELS + ZOOMPIXELS ) + 50;
const canvasheight = ( ZOOMPIXELS * 3 ) + 100;


const DOODLE_THICK = 18;    // thickness of doodle lines 
const DOODLE_BLUR = 3;      // blur factor applied to doodles 


let mnist;      
// all data is loaded into this 
// mnist.train_images
// mnist.train_labels
// mnist.test_images
// mnist.test_labels


let trainer;
let mycnnTrain, mycnnModel;

let trainrun = 1;
let train_index = 0;

let testrun = 1;
let test_index = 0;
let total_tests = 0;
let total_correct = 0;

// images in LHS:
let doodle, demo;
let doodle_exists = false;
let demo_exists = false;

let mousedrag = false;      // are we in the middle of a mouse drag drawing?  


// save inputs to global var to inspect
// type these names in console 
var train_inputs, test_inputs, demo_inputs, doodle_inputs;


// Matrix.randomize() is changed to point to this. Must be defined by user of Matrix. 

function randomWeight()
{
    return ( AB.randomFloatAtoB ( -1, 1 ) );
            // Coding Train default is -1 to 1
}    


// make run header bigger
AB.headerCSS ( { "max-height": "95vh" } );




//--- start of AB.msgs structure: ---------------------------------------------------------
// We output a serious of AB.msgs to put data at various places in the run header 
var thehtml;

  // 1 Doodle header 
  thehtml = "<hr> <h1> 1. Doodle </h1> Top row: Doodle (left) and shrunk (right). <br> " +
        " Draw your doodle in top LHS. <button onclick='wipeDoodle();' class='normbutton' >Clear doodle</button> <br> ";
   AB.msg ( thehtml, 1 );

  // 2 Doodle variable data (guess)
  
  // 3 Training header
  thehtml = "<hr> <h1> 2. Training </h1> Middle row: Training image magnified (left) and original (right). <br>  " +
        " <button onclick='do_training = false;' class='normbutton' >Stop training</button> <br> ";
  AB.msg ( thehtml, 3 );
     
  // 4 variable training data 
  
  // 5 Testing header
  thehtml = "<h3> Hidden tests </h3> " ;
  AB.msg ( thehtml, 5 );
           
  // 6 variable testing data 
  
  // 7 Demo header 
  thehtml = "<hr> <h1> 3. Demo </h1> Bottom row: Test image magnified (left) and  original (right). <br>" +
        " The network is <i>not</i> trained on any of these images. <br> " +
        " <button onclick='makeDemo();' class='normbutton' >Demo test image</button> <br> ";
   AB.msg ( thehtml, 7 );
   
  // 8 Demo variable data (random demo ID)
  // 9 Demo variable data (changing guess)
  
const greenspan = "<span style='font-weight:bold; font-size:x-large; color:darkgreen'> "  ;

//--- end of AB.msgs structure: ---------------------------------------------------------




function setup() 
{
  createCanvas ( canvaswidth, canvasheight );

  doodle = createGraphics ( ZOOMPIXELS, ZOOMPIXELS );       // doodle on larger canvas 
  doodle.pixelDensity(1);
  
// JS load other JS 
// maybe have a loading screen while loading the JS and the data set 
    wipeDoodle();
      AB.loadingScreen();
 
 $.getScript ( "/uploads/codingtrain/matrix.js", function()
 {
   $.getScript ( "/uploads/jagtaps2/convnet-min.js", function()
   {
        console.log ("All JS loaded");
        mycnnModel = new convnetjs.Net()
        AB.queryDataExists ( function ( exists )		// asynchronous - need callback function 
			{ var json="";
				if ( exists ){
				    console.log ( "MH --- restoring data");
				  AB.restoreData ( function (json_obj )            
	                {
            		   json=JSON.parse(json_obj);
                       mycnnModel.fromJSON(json);
	                });
				}
			    else{
                   var layerDefs = [];
                   
                   // input layer of size 24x24x1 
                   layerDefs.push({type : "input", out_sx : 24, out_sy : 24, out_depth : 1});
                   
                   // 5x5 filters will be convolved with the input with tanh activation funtion
                   layerDefs.push({type : "conv",  sx : 5, filters : 16,  stride : 1, pad : 2, activation : "relu"});
                   
                   // perform max pooling in 2x2 non-overlapping neighborhoods
                   layerDefs.push({type : "pool",  sx : 2, stride : 2});
                   
                   // 5x5 filters will be convolved with the input with relu activation funtion
                   layerDefs.push({type : "conv",  sx : 5, filters : 16, stride : 1, pad : 2, activation : "tanh"});
                   
                   layerDefs.push({type : "pool",  sx : 3, stride : 3});
                   
                   // a softmax classifier predicting probabilities for 26 classes: which is alphabets
                   layerDefs.push({type : "softmax", num_classes : 26});
                   //layerDefs.push({type:'lrn', k:1, n:26, alpha:0.1, beta:0.75});
                   mycnnModel.makeLayers(layerDefs);
                   
                   //Converting to model to json
                   json = mycnnModel.toJSON();
                   
				    console.log ( "MH --- saving data");
                   //saving the model, please make sure you need to login and the program is running under the session
                    AB.saveData(JSON.stringify(json));
			    }
			    trainer = new convnetjs.SGDTrainer(mycnnModel, {method : "adadelta", momentum : .9, batch_size : 20, l2_decay : 0.001 });
			});
        loadData();
   });
 });
}



// load data set from local file (on this server)

function loadData()    
{
  loadMNIST ( function(data)    
  {
    mnist = data;
    console.log ("All data loaded into mnist object:");
       for (var i=0; i < NOTRAIN; i++) {
         rotateImageBy90(mnist.train_images[i]);
       }
       for(i=0; i < NOTEST; i++) {
         rotateImageBy90(mnist.test_images[i]);
       }
    AB.removeLoading();     // if no loading screen exists, this does nothing 
  });
}

function rotateImageBy90(img) {
 
 for (var a = 0; a < PIXELS; a++) {
   for (var b = a; b < PIXELS; b++) {
     var key = a * PIXELS + b;
     var s = b * PIXELS + a;
     var val = img[key];
     img[key] = img[s];
     img[s] = val;
   }
 }
}
function get_activation_input(obj) {
    
 // 24x24x1 volume of input activations
 var e = new convnetjs.Vol(24, 24, 1);
 var i = 0;
 for (; i < PIXELSSQUARED; i++) {
   e.w[i] = obj[i];
 }
 return e;
}


function getImage ( img )      // make a P5 image object from a raw data array   
{
    let theimage  = createImage (PIXELS, PIXELS);    // make blank image, then populate it 
    theimage.loadPixels();        
    
    for (let i = 0; i < PIXELSSQUARED ; i++) 
    {
        let bright = img[i];
        let index = i * 4;
        theimage.pixels[index + 0] = bright;
        theimage.pixels[index + 1] = bright;
        theimage.pixels[index + 2] = bright;
        theimage.pixels[index + 3] = 255;
    }
    
    theimage.updatePixels();
    return theimage;
}


function getInputs ( img )      // convert img array into normalised input array 
{
    let inputs = [];
    for (let i = 0; i < PIXELSSQUARED ; i++)          
    {
        let bright = img[i];
        inputs[i] = bright / 255;       // normalise to 0 to 1
    } 
    return ( inputs );
}

 

function trainit (show)        // train the network with a single exemplar, from global var "train_index", show visual on or off 
{
  let img   = mnist.train_images[train_index];
  let label = mnist.train_labels[train_index];
  
  // optional - show visual of the image 
  if (show)                
  {
    var theimage = getImage ( img );    // get image from data array 
    image ( theimage,   0,                ZOOMPIXELS+50,    ZOOMPIXELS,     ZOOMPIXELS  );      // magnified 
    image ( theimage,   ZOOMPIXELS+50,    ZOOMPIXELS+50,    PIXELS,         PIXELS      );      // original
  }

  // set up the inputs
  let inputs = getInputs ( img );       // get inputs from data array 

  // set up the outputs

  // console.log(train_index);
  // console.log(inputs);
  // console.log(targets);

  train_inputs = get_activation_input(inputs);        // can inspect in console 
  trainer.train ( train_inputs, label );

  thehtml = " trainrun: " + trainrun + "<br> no: " + train_index ;
  AB.msg ( thehtml, 4 );

  
  if ( ++train_index == NOTRAIN ) 
  {
    train_index = 0;
    console.log( "finished trainrun: " + trainrun );
    trainrun++;
  }
}


function testit()    // test the network with a single exemplar, from global var "test_index"
{ 
  let img   = mnist.test_images[test_index];
  let label = mnist.test_labels[test_index];

  // set up the inputs
  let inputs = getInputs ( img ); 
  
  test_inputs = get_activation_input(inputs);        // can inspect in console 
  let prediction    = mycnnModel.forward(test_inputs).w       // array of outputs 
  let guess         = findMax(prediction);      // the top output 

  total_tests++;
  if (guess == label)  total_correct++;

  let percent = (total_correct / total_tests) * 100 ;
  
  thehtml =  " testrun: " + testrun + "<br> no: " + total_tests + " <br> " +
        " correct: " + total_correct + "<br>" +
        "  score: " + greenspan + percent.toFixed(2) + "</span>";
  AB.msg ( thehtml, 6 );

  test_index++;
  if ( test_index == NOTEST ) 
  {
    console.log( "finished testrun: " + testrun + " score: " + percent.toFixed(2) );
    testrun++;
    test_index = 0;
    total_tests = 0;
    total_correct = 0;
  }
}




//--- find no.1 (and maybe no.2) output nodes ---------------------------------------
// (restriction) assumes array values start at 0 (which is true for output nodes) 


function find12 (a)         // return array showing indexes of no.1 and no.2 values in array 
{
  let no1 = 0;
  let no2 = 0;
  let no1value = 0;     
  let no2value = 0;
  
  for (let i = 0; i < a.length; i++) 
  {
    if (a[i] >= no1value)   // new no1
    {
      // old no1 becomes no2
      no2 = no1;
      no2value = no1value;
      // now put in the new no1
      no1 = i;
      no1value = a[i];
    }
    else if (a[i] >= no2value)  // new no2 
    {
      no2 = i;
      no2value = a[i];
    }
  }
  
  var b = [ no1, no2 ];
  return b;
}



// just get the maximum - separate function for speed - done many times 
// find our guess - the max of the output nodes array

function findMax (a)        
{
  let no1 = 0;
  let no1value = 0;     
  
  for (let i = 0; i < a.length; i++) 
  {
    if (a[i] > no1value) 
    {
      no1 = i;
      no1value = a[i];
    }
  }
  
  return no1;
}




// --- the draw function -------------------------------------------------------------
// every step:
 
function draw() 
{
  // check if libraries and data loaded yet:
  if ( typeof mnist == 'undefined' ) return;


// how can we get white doodle on black background on yellow canvas?
//        background('#ffffcc');    doodle.background('black');

      background ('black');
        strokeWeight(1);
        stroke("yellow");
        
         rect(0, 0, ZOOMPIXELS, ZOOMPIXELS);
         
         textSize(10);
         textAlign(CENTER);
         text("You can draw DOODLE here", ZOOMPIXELS / 2, ZOOMPIXELS / 2)
if ( do_training )    
{
  // do some training per step 
    for (let i = 0; i < TRAINPERSTEP; i++) 
    {
      if (i == 0)    trainit(true);    // show only one per step - still flashes by  
      else           trainit(false);
    }
    
  // do some testing per step 
    for (let i = 0; i < TESTPERSTEP; i++) 
      testit();
}

  // keep drawing demo and doodle images 
  // and keep guessing - we will update our guess as time goes on 
  
  if ( demo_exists )
  {
    drawDemo();
    guessDemo();
  }
  if ( doodle_exists ) 
  {
    drawDoodle();
    guessDoodle();
  }


// detect doodle drawing 
// (restriction) the following assumes doodle starts at 0,0 

  if ( mouseIsPressed )         // gets called when we click buttons, as well as if in doodle corner  
  {
     // console.log ( mouseX + " " + mouseY + " " + pmouseX + " " + pmouseY );
     var MAX = ZOOMPIXELS + 20;     // can draw up to this pixels in corner 
     if ( (mouseX < MAX) && (mouseY < MAX) && (pmouseX < MAX) && (pmouseY < MAX) )
     {
        mousedrag = true;       // start a mouse drag 
        doodle_exists = true;
        doodle.stroke('white');
        doodle.strokeWeight( DOODLE_THICK );
        doodle.line(mouseX, mouseY, pmouseX, pmouseY);      
     }
  }
  else 
  {
      // are we exiting a drawing
      if ( mousedrag )
      {
            mousedrag = false;
            // console.log ("Exiting draw. Now blurring.");
            doodle.filter (BLUR, DOODLE_BLUR);    // just blur once 
            //   console.log (doodle);
      }
  }
}




//--- demo -------------------------------------------------------------
// demo some test image and predict it
// get it from test set so have not used it in training


function makeDemo()
{
    demo_exists = true;
    var  i = AB.randomIntAtoB ( 0, NOTEST - 1 );  
    
    demo        = mnist.test_images[i];     
    var labelNo   = mnist.test_labels[i];
    
   thehtml =  "Test image no: " + i + "<br>" + 
            "Classification: " + ALPHABETS[labelNo-1] + "<br>" ;
   AB.msg ( thehtml, 8 );
   
   // type "demo" in console to see raw data 
}


function drawDemo()
{
    var theimage = getImage ( demo );
     //  console.log (theimage);
     
    image ( theimage,   0,                canvasheight - ZOOMPIXELS,    ZOOMPIXELS,     ZOOMPIXELS  );      // magnified 
    image ( theimage,   ZOOMPIXELS+50,    canvasheight - ZOOMPIXELS,    PIXELS,         PIXELS      );      // original
}


function guessDemo()
{
   let inputs = getInputs ( demo ); 
   
  demo_inputs = inputs;  // can inspect in console 
  
  let prediction    = mycnnModel.forward(demo_inputs).w;       // array of outputs 
  let guess         = findMax(prediction);      // the top output 

   thehtml =   " We classify it as: " + greenspan + ALPHABETS[guess-1] + "</span>" ;
   AB.msg ( thehtml, 9 );
}




//--- doodle -------------------------------------------------------------

function drawDoodle()
{
    // doodle is createGraphics not createImage
    let theimage = doodle.get();
    // console.log (theimage);
    
    image ( theimage,   0,                0,    ZOOMPIXELS,     ZOOMPIXELS  );      // original 
    image ( theimage,   ZOOMPIXELS+50,    0,    PIXELS,         PIXELS      );      // shrunk
}
      
      
function guessDoodle() 
{
   // doodle is createGraphics not createImage
   let img = doodle.get();
  
  img.resize ( PIXELS, PIXELS );     
  img.loadPixels();

  // set up inputs   
  let inputs = [];
  for (let i = 0; i < PIXELSSQUARED ; i++) 
  {
     inputs[i] = img.pixels[i * 4] / 255;
  }
  
  doodle_inputs = get_activation_input(inputs);     // can inspect in console 

  // feed forward to make prediction 
  let prediction    = mycnnModel.forward(doodle_inputs).w;      // array of outputs 
  let b             = find12(prediction);       // get no.1 and no.2 guesses  

  thehtml =   " We classify it as: " + greenspan + ALPHABETS[b[0]-1] + "</span> <br>" +
            " No.2 guess is: " + greenspan + ALPHABETS[b[1]-1] + "</span>";
  AB.msg ( thehtml, 2 );
}


function wipeDoodle()    
{
    doodle_exists = false;
    doodle.background('black');
}




// --- debugging --------------------------------------------------
// in console
// showInputs(demo_inputs);
// showInputs(doodle_inputs);

function showInputs ( inputs )
// display inputs row by row, corresponding to square of pixels 
{
    var str = "";
    for (let i = 0; i < inputs.length; i++) 
    {
      if ( i % PIXELS == 0 )    str = str + "\n";                                   // new line for each row of pixels 
      var value = inputs[i];
      str = str + " " + value.toFixed(2) ; 
    }
    console.log (str);
}

function loadMNIST(callback) {
    let mnist = {};
    let files = {
        train_images: '/uploads/dheera0704/emnist-letters-train-images-idx3-ubyte.bin',
        train_labels: '/uploads/jagtaps2/emnist-letters-train-labels-idx1-ubyte.bin',
        test_images:  '/uploads/jagtaps2/emnist-letters-test-images-idx3-ubyte.bin',
        test_labels:  '/uploads/jagtaps2/emnist-letters-test-labels-idx1-ubyte.bin',
    };
    return Promise.all(Object.keys(files).map(async file => {
        mnist[file] = await loadFile(files[file]);
    })).then(() => callback(mnist));
}

async function loadFile(file) {
    let buffer = await fetch(file).then(r => r.arrayBuffer());
    let headerCount = 4;
    let headerView = new DataView(buffer, 0, 4 * headerCount);
    let headers = new Array(headerCount).fill().map((_, i) => headerView.getUint32(4 * i, false));

    // Get file type from the magic number
    let type, dataLength;
    if(headers[0] == 2049) {
        type = 'label';
        dataLength = 1;
        headerCount = 2;
    } else if(headers[0] == 2051) {
        type = 'image';
        dataLength = headers[2] * headers[3];
    } else {
        throw new Error("Unknown file type " + headers[0])
    }

    let data = new Uint8Array(buffer, headerCount * 4);
    if(type == 'image') {
        dataArr = [];
        for(let i = 0; i < headers[1]; i++) {
            dataArr.push(data.subarray(dataLength * i, dataLength * (i + 1)));
        }
        return dataArr;
    }
    return data;
}