Code viewer for World: New World

// Use JS to write whatever HTML and data you want to the page 

// One way of using JS to write HTML and data is with a multi-line string
// https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals




document.write ( `
<div class="digit-demo-container">
  <h3 id="digit-recognizer-live-demo">Digit Recognizer using TensorFlow.js Demo</h3>
  <div class="flex-two" style="margin-top: 20px;">
    <button id="clear_canvas" class="material-button-pink" onclick="clearCanvas(this.id)">Clear</button>
    <select id="select_model">
      <option>MLP</option>
      <option>CNN</option>
    </select>
    <button id="predict_canvas" class="material-button-pink" onclick="predict(this.id)">Predict</button>
  </div>
  <div class="flex-two">
    <div id="canvas_box_wrapper" class="canvas-box-wrapper">
      <div id="canvas_box" class="canvas-box">
      </div>
    </div>
    <div id="result_box">
      <canvas id="chart_box" width="100" height="100"></canvas>
    </div>
  </div>
</div>



` );

const cssText = `
.digit-demo-container {
  background-color: #4CAF50;
  border-radius: 5px;
  margin: 20px auto;

  h3 {
    width: 100%;
    font-size: 15px;
    background-color: #356937;
    padding: 10px;
    color: white;
    margin: 0px;
    border: 1px solid #295b2b;
    border-bottom: 0px;
    border-top-left-radius: 5px;
    border-top-right-radius: 5px;
  }

  select {
    margin-top: 0px;
    height: 30px;
    font-size: 12px;
  }
}

.flex-two {
  display: flex;
  flex-wrap: wrap;
  div {
    flex: 1;
    padding: 20px;
    text-align: center;
    @include mobile {
      padding: 5px;
    }
  }
}

.canvas-box-wrapper {
  display: block !important;

}

.material-button-pink {
  background-color: #FFD740;
  height: 30px;
  color: black;
  display: block;
  font-family: $font_body;
  font-weight: bold;
  padding: 5px 10px;
  cursor: pointer;
  border: 1px solid #a58e3a;
  font-size: 12px;
  transition: all 0.3s cubic-bezier(0.25, 0.8, 0.25, 1); 
  margin: 0px auto;
  border-radius: 5px;
}

.material-button-pink:focus {
  outline: none;
}

.material-button-pink:hover {
  box-shadow: 0 1px 8px rgba(0,0,0,0.3), 0 5px 10px rgba(0,0,0,0.22);
}

#chart_box {
  background-color: white;
  padding: 20px;
  border-radius: 5px;
  @include mobile {
    padding: 5px;
  }
}
`


// const tfurl = "https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@latest"
const chartjsurl = "https://cdnjs.cloudflare.com/ajax/libs/Chart.js/2.4.0/Chart.min.js";
$.getScript ( chartjsurl, function() {
    console.log('chartjs loaded');
});
// $.getScript ( tfurl, function() {
//     console.log('tfjs loaded');
// });

const TFurl = 'https://unpkg.com/@tensorflow/tfjs';  
// var MNurl = 'https://unpkg.com/@tensorflow-models/mobilenet';  
// var ml5url = 'https://unpkg.com/ml5@0.4.3/dist/ml5.min.js'  
$.getScript( TFurl, function() {  
    console.log('tensorflow.js loaded');  
});  
  
const head = document.getElementsByTagName('head')[0];  
let script = document.createElement('script');  
script.type = 'text/javascript';  
script.onload = function() {  
    console.log('tf inserted');  
}  
script.src = TFurl;  
head.appendChild(script);

// insert css
// let style = document.createElement('style');
// style.setAttribute('type', 'text/css');
// if (style.styleSheet) {   // IE
//     style.styleSheet.cssText = css;
// } else {                // the world
//     style.appendChild(document.createTextNode(css));
// }
// head.appendChild(style);
 
//  $.getScript ( tfurl, function()
//  {
//   $.getScript ( "https://code.jquery.com/jquery-2.1.1.min.js", function()
//   {
//         $.getScript ( "/uploads/codingtrain/mnist.js", function()
//         {
//             console.log ("All JS loaded");

//         });
//   });
//  });
// }

// GLOBAL variables
var modelName = "digitrecognizermlp";
let model;

// canvas related variables
// you can change these variables
var canvasWidth             = 150;
var canvasHeight            = 150;
var canvasStrokeStyle       = "white";
var canvasLineJoin          = "round";
var canvasLineWidth         = 12;
var canvasBackgroundColor   = "black";
var canvasId                = "canvas";

// variables to hold coordinates and dragging boolean
var clickX = new Array();
var clickY = new Array();
var clickD = new Array();
var drawing;

document.getElementById('chart_box').innerHTML = "";
document.getElementById('chart_box').style.display = "none";

//---------------------
// Create canvas
//---------------------
var canvasBox = document.getElementById('canvas_box');
var canvas    = document.createElement("canvas");

canvas.setAttribute("width", canvasWidth);
canvas.setAttribute("height", canvasHeight);
canvas.setAttribute("id", canvasId);
canvas.style.backgroundColor = canvasBackgroundColor;
canvasBox.appendChild(canvas);
if(typeof G_vmlCanvasManager != 'undefined') {
  canvas = G_vmlCanvasManager.initElement(canvas);
}

ctx = canvas.getContext("2d");
//---------------------
// MOUSE DOWN function
//---------------------
$("#canvas").mousedown(function(e) {
  var mouseX = e.pageX - this.offsetLeft;
  var mouseY = e.pageY - this.offsetTop;

  drawing = true;
  addUserGesture(mouseX, mouseY);
  drawOnCanvas();
});

//---------------------
// TOUCH START function
//---------------------
canvas.addEventListener("touchstart", function (e) {
  if (e.target == canvas) {
      e.preventDefault();
    }

  var rect  = canvas.getBoundingClientRect();
  var touch = e.touches[0];

  var mouseX = touch.clientX - rect.left;
  var mouseY = touch.clientY - rect.top;

  drawing = true;
  addUserGesture(mouseX, mouseY);
  drawOnCanvas();

}, false);


// MOUSE MOVE function
//---------------------
$("#canvas").mousemove(function(e) {
  if(drawing) {
    var mouseX = e.pageX - this.offsetLeft;
    var mouseY = e.pageY - this.offsetTop;
    addUserGesture(mouseX, mouseY, true);
    drawOnCanvas();
  }
});

//---------------------
// TOUCH MOVE function
//---------------------
canvas.addEventListener("touchmove", function (e) {
  if (e.target == canvas) {
      e.preventDefault();
    }
  if(drawing) {
    var rect = canvas.getBoundingClientRect();
    var touch = e.touches[0];

    var mouseX = touch.clientX - rect.left;
    var mouseY = touch.clientY - rect.top;

    addUserGesture(mouseX, mouseY, true);
    drawOnCanvas();
  }
}, false);


//---------------------
// MOUSE UP function
//---------------------
$("#canvas").mouseup(function(e) {
  drawing = false;
});

//---------------------
// TOUCH END function
//---------------------
canvas.addEventListener("touchend", function (e) {
  if (e.target == canvas) {
      e.preventDefault();
    }
  drawing = false;
}, false);

//----------------------
// MOUSE LEAVE function
//----------------------
$("#canvas").mouseleave(function(e) {
  drawing = false;
});

//---------------------
// TOUCH LEAVE function
//---------------------
canvas.addEventListener("touchleave", function (e) {
  if (e.target == canvas) {
      e.preventDefault();
    }
  drawing = false;
}, false);

//----------------------
// ADD CLICK function
//----------------------
function addUserGesture(x, y, dragging) {
  clickX.push(x);
  clickY.push(y);
  clickD.push(dragging);
}

//----------------------
// RE DRAW function
//----------------------
function drawOnCanvas() {
  ctx.clearRect(0, 0, ctx.canvas.width, ctx.canvas.height);

  ctx.strokeStyle = canvasStrokeStyle;
  ctx.lineJoin    = canvasLineJoin;
  ctx.lineWidth   = canvasLineWidth;

  for (var i = 0; i < clickX.length; i++) {
    ctx.beginPath();
    if(clickD[i] && i) {
      ctx.moveTo(clickX[i-1], clickY[i-1]);
    } else {
      ctx.moveTo(clickX[i]-1, clickY[i]);
    }
    ctx.lineTo(clickX[i], clickY[i]);
    ctx.closePath();
    ctx.stroke();
  }
}

//----------------------
// CLEAR CANVAS function
//----------------------
function clearCanvas(id) {
  ctx.clearRect(0, 0, canvasWidth, canvasHeight);
  clickX = new Array();
  clickY = new Array();
  clickD = new Array();
}

//-----------------------
// select model handler
//-----------------------
$("#select_model").change(function() {
    var select_model  = document.getElementById("select_model");
    var select_option = select_model.options[select_model.selectedIndex].value;

    if (select_option == "MLP") {
      modelName = "digitrecognizermlp";

    } else if (select_option == "CNN") {
      modelName = "digitrecognizercnn";

    } else {
      modelName = "digitrecognizermlp";
    }

    loadModel(modelName);
});

//-------------------------------------
// loader for digitrecognizermlp model
//-------------------------------------
async function loadModel() {
  console.log("model loading..");

  // clear the model variable
  model = undefined;
  
  // load the model using a HTTPS request (where you have stored your model files)
  if (modelName === "digitrecognizermlp") {
      model = await tf.loadLayersModel("uploads/lukescales/mlp_model_update.json");
  } else {
     model = await tf.loadLayersModel("uploads/lukescales/cnn_model_update.json"); 
  }
  
  
  console.log("model loaded..");
}



//-----------------------------------------------
// preprocess the canvas to be DNN friendly
//-----------------------------------------------
function preprocessCanvas(image, modelName) {

  // if model is not available, send the tensor with expanded dimensions
  if (modelName === undefined) {
    alert("No model defined..")
  } 

  // if model is digitrecognizermlp, perform all the preprocessing
  else if (modelName === "digitrecognizermlp") {
    
    // resize the input image to digitrecognizermlp's target size of (784, )
    let tensor = tf.browser.fromPixels(image)
        .resizeNearestNeighbor([28, 28])
        .mean(2)
        .toFloat()
        .reshape([1 , 784]);
    return tensor.div(255.0);
  }

  // if model is digitrecognizercnn, perform all the preprocessing
  else if (modelName === "digitrecognizercnn") {
    // resize the input image to digitrecognizermlp's target size of (1, 28, 28, 1)
    let tensor = tf.browser.fromPixels(image)
        .resizeNearestNeighbor([28, 28])
        .mean(2)
        .expandDims(2)
        .expandDims()
        .toFloat();
    console.log(tensor.shape);
    return tensor.div(255.0);
  }

  // else throw an error
  else {
    alert("Unknown model name..")
  }
}

//----------------------------
// Bounding box for centering
//----------------------------
function boundingBox() {
  var minX = Math.min.apply(Math, clickX) - 20;
  var maxX = Math.max.apply(Math, clickX) + 20;
  
  var minY = Math.min.apply(Math, clickY) - 20;
  var maxY = Math.max.apply(Math, clickY) + 20;

  var tempCanvas = document.createElement("canvas"),
  tCtx = tempCanvas.getContext("2d");

  tempCanvas.width  = maxX - minX;
  tempCanvas.height = maxY - minY;

  tCtx.drawImage(canvas, minX, minY, maxX - minX, maxY - minY, 0, 0, maxX - minX, maxY - minY);

//   var imgBox = document.getElementById("canvas_image");
//   imgBox.src = tempCanvas.toDataURL();

  return tempCanvas;
}

//--------------------------------------------
// predict function for digit recognizer mlp
//--------------------------------------------
async function predict() {
    // model = await tf.loadLayersModel("uploads/lukescales/processed_model_v2.json");
   await loadModel();

  // get the user drawn region alone cropped
  croppedCanvas = boundingBox();

  // show the cropped image 
//   document.getElementById("canvas_output").style.display = "block";

  // preprocess canvas
  let tensor = preprocessCanvas(croppedCanvas, modelName);

  // make predictions on the preprocessed image tensor
  let predictions = await model.predict(tensor).data();

  // get the model's prediction results
  let results = Array.from(predictions)

  // display the predictions in chart
  displayChart(results)

  console.log(results);
}

//------------------------------
// Chart to display predictions
//------------------------------
var chart = "";
var firstTime = 0;
function loadChart(label, data, modelSelected) {
  var context = document.getElementById('chart_box').getContext('2d');
  chart = new Chart(context, {
      // we are in need of a bar chart
      type: 'bar',

      // we feed in data dynamically using data variable
      // that is passed as an argument to this function
      data: {
          labels: label,
          datasets: [{
              label: modelSelected + " prediction",
              backgroundColor: '#f50057',
              borderColor: 'rgb(255, 99, 132)',
              data: data,
          }]
      },

      // you can also play around with options for the 
      // chart if you find time!
      options: {}
  });
}

//----------------------------
// display chart with updated
// drawing from canvas
//----------------------------
function displayChart(data) {
  var select_model  = document.getElementById("select_model");
  var select_option = select_model.options[select_model.selectedIndex].value;
  
  label = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"];
  if (firstTime == 0) {
    loadChart(label, data, select_option);
    firstTime = 1;
  } else {
    chart.destroy();
    loadChart(label, data, select_option);
  }
  document.getElementById('chart_box').style.display = "block";
}